1. States of Matter

1.1. Solids, Liquids and Gases

- States of Matter are the different forms in which matter can exist
- The three states of matter are: **Solid**, **Liquids** and **Gases**

Properties of Solid, Liquid and Gases

	Solids	Liquids	Gases
Shape	have a definite shape	take the shape of their container	take the shape of their container
Density	high	moderate to high	low
Volume	have a fixed volume	have a fixed volume	don't have a fixed volume - expand to fill the container
Fluidity	n <u>on-fluid</u> in nature	fluid in nature	fluid in nature
Particle Space	Houching barely any inter- molecular spaces	closely packed together, with barely any inter- molecular	presence of large, inter- molecular spaces
Particular Movement	particles are immobile; however, they can vibrate about their fixed positions	particles can move past one another	particles are mobile and <u>move</u> randomly
Particular Arrangement	particles are arranged regularly in a lattice	particles are arranged irregularly	particles are arranged irregularly

1.2. Changes of States

Boiling and Evaporation

Boiling and Evaporation are both **endothermic processes**:

- <u>Boiling and Evaporation</u> are processes which involve the conversion of a liquid into a gas.
- Both processes allow molecules to move further apart from each other.

Boiling	Evaporation
0	

Boiling	Evaporation
happens at a set temperature called the boiling point	occurs at any temperature below the boiling point and above the freezing point (liquid)
occurs throughout the liquid	only occurs at the <u>surface</u>
relatively faster process	a slow process

Condensation

Condensation is the process by which a gas converts into a liquid. It happens at the same temperature as the boiling point.

- As temperature decreases, the **energy of particles will decrease**, making it move more slowly.
- Condensation and Freezing are both **energy-given out** reactions.

Freezing, Melting and Sublimation

- 1. Melting is the process in which a solid converts to a liquid. It happens at a set temperature called the melting point.
- 2. Freezing is the process in which a liquid converts to a solid. It happens at the same temperature as the freezing point.
- 3. Sublimation occurs when a solid has enough energy to convert into a gas or gas converted into a solid.

1.3. Cooling and Heating Curves

Cooling Curves

- 1. On cooling, the particles of a gas move slower and slower and the gas contracts
- 2. The particles are now closer together, and intermolecular bonds start to form between them once the condensation point is reached
- 3. The temperature of the substance stops falling; the energy released by bond formation cancels out the energy lost due to cooling Constant temp
- 4. Once all the gas has turned into liquid, the temperature starts to fall again, and the liquid begins to contract until the freezing point is reached
- 5. At the freezing point, inter-molecular bonds between the liquid molecules start to develop to form a solid
- 6. At the freezing point, the temperature remains constant until all of the liquid has solidified since the energy released due to bond formation cancels out the energy lost due to cooling

The following curve is obtained if this phenomenon is plotted - the cooling curve:

Heating Curves

- 1. On heating, the particles of a solid start to vibrate faster and faster in their mean positions, and the solid begins to expand
- 2. Once the melting point is reached, the inter-molecular bonds between the particles begin to breakdown
- 3. The temperature of the substance at this point remains constant until all the solid has turned into a liquid because the energy received by the system is cancelled out by the energy used to break intermolecular bonds
- 4. Once all the solid has turned to liquid, the temperature starts to rise again, and the liquid begins to expand until the boiling point is reached
- 5. At the boiling point, the intermolecular bonds between the liquid molecules start to break down to form gas
- 6. At the boiling point, the temperature of the substance remains constant until all of the liquid has vaporised since the energy absorbed by the substance is cancelled by the energy used for the breakdown of intermolecular bonds

The following curve is obtained if this phenomenon is plotted - the heating curve:

1.4. Effects of Temperature and Pressure on Gas

Gases are compressible. By changing the pressure acting on them, their volume may be influenced.

- 1. An <u>increase</u> in external <u>pressure</u> produces a contraction (decrease) in volume. The gas is said to be compressed.
- 2. A fall in external pressure produces an expansion (increase) in volume. The gas is said to be decompressed.

The volume of gases may also be influenced by temperature. The temperature of a gas affects its internal pressure and, thereby, its volume.

- 1. When temperature increases, the gas molecules have increased kinetic energy and hit the walls of their container more often and with greater force. This causes an increase in internal pressure and an increase in volume.
- 2. When the temperature decreases, the gas molecules have decreased kinetic energy and hit the walls of their container less often and with attenuated force. This causes a decrease in internal pressure and a decrease in volume.

1.5. Diffusion

Diffusion: the net movement of particles from a region of higher concentration to a region of lower concentration as a result of their random movement until equilibrium is reached.

The rate of diffusion is most rapid in gases > liquids > solids.

1.6. Effect of Relative Molecular Mass in Diffusion

- The rate at which gases diffuse differs and depends on the gas molecules' mass.
- At the same temperature, molecules with a lower mass move faster on average than those with a higher mass.

The HCL and NH₃ Experiment

The experiment involved placing a cotton wool plug soaked in hydrochloric acid (HCl) at one end of a glass tube and a cotton wool plug soaked in ammonia (NH3) at the other.

The tube was left undisturbed for some time, during which the gases diffused towards each other. The diffusion rate was measured by observing the distance travelled by each gas after a fixed time. It was found that ammonia, with a lower molecular mass, diffused faster than hydrochloric acid, which has a higher molecular mass.

Conclusion: Ammonia has a **smaller Mr** than hydrochloric acid, so ammonia has a **greater rate of diffusion**. Therefore, the white ring of ammonium chloride **forms near the hydrochloric acid**.

2. Atoms, Elements and Compounds

Atom: The smallest particle of matter made of protons, neutrons and electrons

2.1. Elements, Compounds and Mixtures

- Elements: Group of atoms that share the SAME number of protons. It cannot be broken down into simpler substances by chemical methods.
- Compounds: Two or more elements chemically bonded together.
- Mixtures: Two or more elements not chemically bonded together.

2.2. Atomic Structure

• An atom comprises three <u>subatomic particles</u>: protons, neutrons and electrons.

- The atom is mostly space with a positively charged nucleus consisting of protons and neutrons in the centre and electrons in the space around the nucleus (held together by the electrostatic force of attraction between them and the positively charged nucleus)
- The characteristics of neutrons, protons and electrons are as follows:

Subatomic particle	Relative Mass	Relative Charge
Proton	1	(+1)
Neutron	1)	0
Electron	1/1840	-1

- Since electrons and protons have opposing and equal charges, <u>the atom's overall charge is neutral</u>. # of p⁺ = # of e⁻
- Neutrons have the purpose of holding the nucleus together. The larger the nucleus gets, the more are the neutrons required to hold the nucleus together

2.3. Proton and Nucleon Number

- The **Proton Number (Atomic Number)** is **the number of protons in the nucleus of an atom**.
- It is unique to each element. It is denoted by the letter "Z".
 For a neutral atom, the number of protons and electrons are equal; therefore, the proton number (Z) also corresponds to the number of electrons.
- The Nucleon Number (Mass Number) is the total number of protons and neutrons in the nucleus of an atom.
- The following format is shown below:

2.4. Electronic Configurations of Elements & Ions

Atoms have electrons that orbit around a central nucleus, and these orbits are referred to as electron shells.

- The energy levels of the shells increase as their distance from the nucleus increases.
- The first shell has a max capacity of **2 electrons**, while the subsequent shell can hold up to **8**.

For this syllabus, we only need to know the **general full** electronic configuration as (2.8.8)

(a) Group VIII noble gases have a full outer shell
(b) the number of outer shell electrons is equal to the group number in Groups I to VII

(c) the number of occupied electron shells is **equal to the period number**

2.5. Isotopes

Isotopes: different atoms of the same element that have the same number of protons but different numbers of neutrons.

- The isotopes of an element have the same chemical properties because they contain the same number of outer shell electrons and therefore have the same electronic configuration.
- **Radioisotopes:** certain isotopes such as Carbon-14 and Tritium have a nucleus so heavy that they are radioactive in nature. Their nucleus is **unstable and breaks up spontaneously.**

2.6. Relative Atomic Masses

- Most elements exist naturally as a mixture of their isotopes. Using the data on the abundance of these naturally occurring isotopes, we can calculate the mass relative atomic mass of the element.
- NOTE: for all purposes, the mass numbers of elements have been rounded off to the nearest whole number; however, only Chlorine is used with its actual mass number of 35.5. This is for the sake of simplicity of calculation
- An example for calculating the relative mass and abundance:
- Q1: Known chlorine has two isotopes: Chlorine-35 and chlorine-37. The abundance for them are 75% and 25, respectively. Calculate relative atomic mass.
 Answer: 35 x 75% + 37 x 25% = 35.5
- Q2. Known relative atomic mass of boron is 10.8, and there are two isotopes: boron-10 and boron-11. Calculate percentage abundance for isotopes.

Answer: let abundance for boron-10 is x, and for boron-11 is (1-x)10x + 11(1-x) = 10.8x = 0.2 = 20%

boron-10 has 20% and boron-11 has 80%.

2.7. lons and lonic Bonds

Cations: Positive lons Anions: Negative lons lonic Bonds: strong electrostatic attraction between oppositely charged ions (metals + non-metals)

Ionic Compounds Dot and Cross Diagram

Typical ionic compounds are usually **giant lattice structures** with a **regular arrangement of alternating positive and negative ions.**

• Using an X and a dot in your drawings will help differentiate the two ions.

Properties of Ionic Compound

- 1. High Boiling and Melting Point: A lot of energy is needed to overcome the strong electrostatic forces between oppositely charged ions (or Strong ionic bonding)
- 2. Good Electrical Conductivity when molten or aqueous:
 As the charges flow, ions can move freely in an aqueous/molten state.
 - lons are not free to move when solid state, as the charges cannot flow. L> poor conductivity
- 3. Ionic Compounds are **soluble in water**: The positive and negative ions are **attracted to water**.
- 4. **Solid in Room Temperature**: Regular arrangement of ions in a lattice with ions of opposite charges next to each other

Other Properties of Ionic Compound

1. Brittle

2. Low Volatility

2.8. Simple Molecules and Covalent Bonds

Covalent Bonding: Pairs of electrons shared between two atoms leading to noble gas electronic configuration (2.8.8)

Covalent Bonds Dot and Cross Diagram

和时候县面景的屋电子, 升公时美西两个的电子, 语言意题回寻求. Н н Н н н **Different Types of Covalent Bonds**

- sinerent rypes of covalent bolids
 - 1. Single Bonds e.g., Chlorine
 - 2. Double Bonds e.g., Carbon Dioxide
 - 3. Triple Bonds e.g., Nitrogen

Properties of Covalent Compound

- 1. The intermolecular forces in covalent compounds are **weak** but have **strong covalent bonds**.
- 2. Covalent Compounds have low melting and boiling point. They require less energy to break the weak intermolecular forces (same as attractive forces).
- 3. Poor Electrical Conductivity **No free electrons or ions** present to carry an electrical current

2.9. Giant Covalent Structures

Giant Covalent (Macromolecular) Structures: solids with very high melting points, where all the atoms are made of pure carbon.

Diamond

Properties

- 1. Each carbon atom is joined with **four other carbon atoms**
- 2. High Melting and Boiling Points Strong Covalent Bonds
- 3. No Delocalised/Free Moving Electrons
- 4. It cannot be scratched easily
- 5. Transparent colour (Extra information)
- 6. Cannot conduct electricity **due to no free-moving** electrons
- 7. Hard in structure
- 8. Giant Lattice Arrangement
- 9. Uses are for cutting tools

Graphite

Properties

1. Each carbon atom is joined with three other carbon atoms

- 2. **High Melting and Boiling Points** Strong covalent bonds within the layers (but the layers are attracted to each other by weak intermolecular forces)
- 3. Contains Delocalised/Free Moving Electrons
- 4. It can be scratched easily
- 5. Opaque/Black
- 6. Can conduct electricity due to free-moving electrons
- 7. Soft Layers can slide easily
- 8. Layers of hexagonal rings held by weak intermolecular forces
- 9. Uses are for lubricant and electrode in Electrolysis

Silicon (IV) Oxide (SiO₂)

Properties

- 1. The structure of <u>Silicon (IV)</u> Oxide is similar/resemblance to that of a diamond.
- 2. Hard Structure
- 3. High melting and boiling point More energy to overcome Strong covalent bond
- 4. Rigid Tetrahedral Structure
- 5. Does not conduct electricity
- Each Silicon atom is covalently bonded with 4 Oxygen Atoms
- Each Oxygen atom is covalently bonded with 2 Silicon Atoms

2.10. Metallic Bonding

Metallic Bonding: the electrostatic attraction between the positive ions in a giant metallic lattice and a "sea" of debalized electrons

Properties of Metallic Bonding

- 1. Metallic Bonds have good electrical conductivity: Delocalised electrons can move through the structures and carry current.
- 2. High Melting and Boiling Point: More energy to overcome strong forces of attraction between positive metal ions and the sea of delocalised electrons & Vibrate/Transfer Heat
- 3. Malleability: Can be hammered into shapes as layers can slide over each other. without breaking metallic bood
- 4. Ductility: Can be drawn into thin wires

3. Stoichiometry

3.1. Formulae

Charges of Elemental Groups

Group	Charges
I	1
I	2
III	3
IV	+/- 4
V	-3
VI	-2
VII	-1
VIII	0

Charges of Common lons

Name	Formula	Charges
Ammonium	NH4 ⁺	+1
Nitrate	NO3 ⁻	-1
Hydroxide	OH-	-1

Name	Formula	Charges
Carbonate	CO32-	-2
Sulfate	504 ²⁻	-2

3.2. State Symbols & Word Equations

- Balancing equations: A chemical equation is balanced when there are an equal number of atoms and charges on both sides of the equation
- State symbols:
 - (s) = solid
 - (l) = liquid
 - (g) = gas
- (aq) = aqueous solution Names of compounds
 - A compound ending with -ide only contains two different elements
 - A compound ending with -ate contains oxygen

3.3. Relative Masses of Atoms and Molecules

- Relative Atomic Mass (A_r): the average mass of the isotopes of an element compared to 1/12th of the mass of an atom of ¹²C.
- Relative Molecular Mass (M_r): sum of relative atomic masses of all the atoms in one molecule of the compound. Relative formula mass

3.4. The Mole and the Avogadro Constant

A **mole** of a substance is the amount that contains the same number of units as the number of carbon atoms in 12 grams of carbon-12

- A mole is the A_r or M_r expressed in grams e.g. 1 mole of Carbon-12 is equal to 12 grams.
- It is equal to 6.02×10^{23} particles; this number is called Avogadro's constant.
- 1 mole also occupies a volume of 24dm³ at room temperature and pressure 法会单位

3.5. Number of Moles

- Amount of Substance (mol)
- Mass (g)
- Molar Mass (Mr) in (g/mol)

3.6. Number of Moles in Aqueous Solution

- Moles (mol)
- Concentration (mol/dm³)
- Volume (dm^3)

讲明请注 了 — 单位

3.7. Moles in Gases

 $Volume = No. of Moles \times 24 dm^3 at r.t.p$

• $1 dm^3 = 1000 cm^3$

3.8. Concentration

no. of moles Concentration =volume

- Moles per dm³
 - $1 mol/dm^3$
- Grams per dm^3 , q/dm^3

Concentration can be measured and converted into q/dm^3 or mol/dm^3 , by multiplying the molar mass of the compound.

3.9. Moles Calculation in Acid-Base Titration

 $Ca(OH)_2$ + 2HCl \rightarrow CaCl₂ + 2H₂O

20.0 cm³ of 0.0500 mol/dm³ HCl reacts with the 25.0 cm³ of Ca(OH)₂.

Determine the concentration of Ca(OH)₂ in g/dm³. Use the following steps.

Calculate the number of moles in 20.0 cm³ of 0.0500 mol/dm³ HCI

We will use the formula:

Concentration x Volume (cm^3)/1000

20 x 0.0500 divide 1000 = 0.001 ms

3.10. Empirical Formulae

- This is the simplest ratio of the atoms in a compound
- For example:
 - Molecular formula of ethane= C₂H₆
 - Empirical formula of ethane = CH₃
- To find out the empirical formula you:
 - Make the percent ratio into the simplest wholeratio number ratio (NOTE: if given %s, use them as grams)
 - Divide the coefficients of each element symbol by the lowest coefficient empirical formula

3.11. Molecular Formulae

-bimula • It shows the actual number of atoms in one molecule of a substance.

3.12. Percentage Purity & Yield

•	Percentage Purity =	$rac{ ext{mass of product (pure)}}{ ext{mass of compound (impure)}} imes 100$
•	${\bf Percentage \ Yield} =$	$\frac{\text{actual mass obtained}}{\text{calculated/theoretical mass}} imes 100$

3.13. Percentage Composition by Mass

(mass of element/molecular mass) x 100

Example Question (0620/42/F/M/23)

Calculate the percentage composition by mass of nitrogen in (NH₄)₂SO₄

2×14 (14+4) x2+32+16x4 ×100 percentage of nitrogen = ... % [2]

- Step 1: Calculate the molar mass of (NH4)2SO4
- Step 2: Find the mass of Nitrogen
- Step 3: Use the formula and multiply by 100.

Step 4: That will be the percentage of the question given.

4. Electrochemistry

Electrolysis: the decomposition of an ionic compound, when molten or aqueous solution- by passing of an electric current

- This is possible due to the presence of mobile electrons/free-moving ions
- An electrolyte is a molten or aqueous substance that undergoes electrolysis can conduct electricity

Components of Electrolysis	Definition	
mert « mreachve?	Metal or graphite rods that aid	
Can conduct electricity	the flow of electricity in and out	
oxidation~	of the electrolyte	rlize
Electrodes	1. Anode: Positive electrode	e
reduction <	2. Cathode: Negative Electrode	
	(PANIC: Positive is Anode,	
	Negative is Cathode)	
Anion	Negatively charged ion that	
Anion	moves to anode	
Cation	Positively charged ion that	
Cation	moves to the cathode	
		4

Note: Reactive electrodes participate in the reaction, while inert electrodes (Graphite, Carbon) do not react with the cations or anions.

- element mass of each
 - element

 - simplest whole number
- each

molar moiss

J

mol

mol

CAIE IGCSE CHEMISTRY

- Reduction of positive cations happens at the cathode
 Oxidation of negative anions happens at the anode For example (Ionic Half Equations)
 - At the anode: $2CI^- \rightarrow CI_2 + 2e^-$
 - At the cathode: $2H^+ + 2e^- \rightarrow H_2$

Useful Acronyms

- 1. **REDCATANOX** (Reduction is Cathode, Anode is Oxidation)
- 2. **OILRIG** (Oxidation is loss, Reduction is gain)
- 3. PANIC (Positive is Anode, Negative is cathode)
- 4. **CMAN** (Cathode discharge Metals, Anode Discharge Non-Metals)

4.3. Observations in Electrolysis

Electrolyte	At Cathode	At Anode
Molten Lead (II) Bromide	Lead	Bromine
Concentrated Hydrochloric Acid	Hydrogen	Chlorine
Concentrated Aqueous Sodium Chloride (Brine) ^{to} produce	Hydrogen	Chlorine
Dilute Sulfuric Acid	Hydrogen	Oxygen
Aqueous Copper (II) Sulfate with Graphite Electrodes	Copper	Oxygen \n
Aqueous Copper (II) Sulfate with Copper Electrodes	Copper	Copper \n

- Blue copper (II) sulfate doesn't change as the concentration of Cu2+ ions remains unchanged.
- Inert (Unreactive electrodes) are Platinum, Graphite or Carbon Electrodes, So they don't react with the ions during electrolysis.

4.4. Electroplating

Electroplating: the process of coating the surface of a metal (more reactive) with another metal (less reactive) using electrolysis

- Components:
 - Anode: pure metal being used to electroplate the object
 - Cathode: object being electroplated
 - Electrolyte: aqueous solution of the soluble salt of pure metal (same as anode) / 上属的版色

4.5. Refining Metals

- Cathode: a thin strip of pure metal
- Anode: impure metal
- Electrolyte: Aqueous Salt Solution of metal

Example:

- The refining of copper: Impure copper as the anode and pure copper as the cathode; the aqueous copper (II) sulfate helps the copper ions move from the anode to the cathode. Here the ions gain electrons and become copper atoms, making the pure copper cathode thicker.
 - 1. Reaction at Anode: $Cu \rightarrow 2e + Cu^{2+}$ (mass decreases)
 - 2. Reaction at Cathode: $Cu^{2+} + 2e \rightarrow Cu$ (mass increases)

reactive metals -> efectrolysis

4.6. Extraction of Aluminum

- The main ore of Aluminium Oxide is bauxite
- Aluminum (III) oxide (alumina) is dissolved in molten cryolite (Na3AlF6) - to wer operative temperature (industrially preferred)

During electrolysis, aluminium ($Al^{3+} + 3e^- \rightarrow Al$) is produced at the carbon cathode, and oxygen ($20^{2-} \rightarrow O_2 + 4e^-$) at the carbon anode.

Molten Cryolite

- High temperatures are needed to melt is expensive. Therefore, molten cryolite lowers the melting point/operating temperature and increases conductivity.
- Due to the high temperature, the oxygen reacts with the carbon in the graphite anode to form CO₂, so the anode must be periodically replaced.

4.7. Electrolysis of Brine - to produce Nach

- Brine is concentrated aqueous NaCl solution
- lons present: Na^+ , H^+ , Cl^- and OH^-

At the anode	At the cathode
Made of titanium	Made of steel
Cl ⁻ ions; Chlorine gas	Hydrogen cations reduced to H ₂ molecules

Unreacted ions (Na⁺, H⁺ and OH⁻) move through porous membrane due to difference in liquid pressure

Left Na⁺ and OH⁻ which form aqueous sodium hydroxide

battery

4.8. Hydrogen-Oxygen Fuel Cells $\rightarrow \frac{1}{2}$ produce

electricity

Hydrogen fre cell Hydrogen Oxygen Fuel Cells: Uses hydrogen and oxygen as the main reactants to produce electricity; the only product released is water.

Chemical Equation: 2H₂ + O₂ → 2H₂O

	_
Advantages of motor vehicles	Disadvantages of motor vehicles
Renewable source	Large fuel tank required
Lesser flammability from petrol	Currently expensive
Emission Free (No carbon COMUT I PAUL U2. pollutions)	Lesser Hydrogen Filling stations
Non-toxic	

5. Chemical Energetics

5.1. Exothermic & Endothermic Reactions

Chemical reactions involve energy transfer between the system (the chemical reaction) and its surroundings.

Exothermic Reaction	Endothermic Reaction
Heat energy is <u>released</u> into	Heat energy is <u>absorbed</u> from
the surroundings	the surroundings
Bond making reactions	Bond breaking reactions
Surrounding temperature	Surroundingtemperature
increases	decreases

5.2. Energy Level Diagrams

Reaction progress diagram / enthalpy level digram

- Energy level diagrams represent chemical reactions that include the relative energies of the reactant and product.
- A reaction's energy change (Δ H) is represented by the difference in height between the reactant and its product.
- The activation energy (Ea) is the minimum energy required for the reaction to take place.

Endothermic Energy Level Diagram

The system gains energy; higher activation energy is required: Energy is taken in.

WWW.ZNOTES.ORG

less reactive metal \Rightarrow Extraction: $C_uO + C \rightarrow C_u + CO_2$ Fero; +3CO \rightarrow 2Fe +3CO₂

Exothermic Energy Level Diagram

• The system loses energy; lower activation energy is required: Energy is given out.

5.3. Bond Energy

- This is the energy required or released when a bond is formed or broken respectively. The unit measure of this energy is kJ/mol.
- The energy change in a reaction is calculated using the following formula:

 $\Delta H = Bond \ Breaking - Bond \ Forming$

- If the overall heat energy value is negative, the reaction is exothermic
- If the overall heat energy value is positive, the reaction is endothermic

Example

ы		, 2UC
Π_2	+ Cl2	$\rightarrow 2 \Pi C I$

Bond	Bond energy (kj/mol)
H - H	436
Cl - Cl	243
H - Cl	432

Bond breaking \rightarrow 436 + 243 = 679 kj/mol Bond forming \rightarrow 2 (432) = 864 kj/mol Thus,

 Δ H \rightarrow 679 - 864 = -185 kj/mol The reaction is exothermic.

6. Chemical Reactions

Physical Change	Chemical Change
The reaction is easily reversible	The reaction is harder to reverse
The product has no new chemical properties	Chemical product has different properties
Ex. dissolving a solute in a solvent	Energy change [exothermic/endothermic]

6.2. Rates of Reaction

Collision Theory

Successful collisions have enough activation energy to break pre-existing bonds and form new bonds at the moment of impact.

Rates of reaction

- The measure of the speed of the collision
- Calculated by the concentration of reactant used up or product produced per unit of time
- Unit = (mol/dm³)/s

6.3. Concentration

Increasing the concentration of reactants increases the rate of reaction

- Higher-concentration reactants contain more particles per unit volume, increasing the successful collision and reaction rates (or frequency)
 When the concentration changes in the rate of reaction
- When the concentration changes in the rate of reaction graph, the collision energy will remain the same, but the collision rate will increase (activation energy does not change).

Less particles, less frequent and successful collision

More particles, more frequent and successful collision

6.4. Temperature

Increasing temperature increases the rate of reaction

• Increased temperatures lead to increased average kinetic energy of particles. Particle movement produces energy greater than/equal to activation energy; an increased successful collision rate leads to an increased reaction rate.

T1 > kinetic energy } > move fester > collision frequency ? > more particles have sufficient energy to overcome Ea.

Particles have less energy, less frequent and successful collision

Particles have high energy, more frequent and successful collision

6.5. Surface Area of Solids

Decreasing the particle size increases the rate of reaction

• Decreasing particle size increases surface area; more reactant particles are exposed to collide, so the successful collision rate increases. This results in an increased rate of reaction

Less particles, less frequent and successful collision

More particles, more frequent and successful collision

GaCO2+2HCI→ CaC/2 + H20+0

Explosive Combustion

- Fine particles are combustible in the air due to a larger surface area
- The rate of reaction is high, making them explosive
- Examples: methane gas in coal mines and flour milling

6.6. Pressure

🤿 gaseous veautants

Increasing the pressure in a gaseous system increases the rate of reaction

compress the Volume

- The distance between particles is reduced under pressure
- There are <u>more particles per unit volume</u>; the successful <u>collision rate increases</u>, resulting in an increased reaction rate.

Figure Increase in pressure of gaseous reactants

6.7. Catalyst

A catalyst is a substance that increases the reaction rate by lowering the activation energy and is left unchanged at the end of the reaction.

- More particles will have an energy greater than or equal to the activation energy, therefore successful collision rate increases resulting in an increased rate of reaction
- For gaseous reactants, if the catalyst is solid metal, the catalyst provides a surface for the reaction.
- The larger the surface area of the metal catalyst, the larger the area for the reaction to take place; therefore higher the rate of reaction

Enzymes Affecting Rate of Reaction

- Enzymes are biological catalysts that speed up reactions but remain chemically unchanged.
- Enzymes function best at optimum temperature and pH level; otherwise, they may denature and completely stop functioning.

GHLOG Heast 2Culton + 2002 6.8. Rates of Reaction Graphs

rate=

Interpreting graphs:

A graph with a steeper gradient at the beginning and reaching a horizontal gradient faster depicts a high rate of reaction.

6.10. Reversible Reactions

The symbol of reversible reactions are: ≠

- The products can then react with each other or decompose to form the reactant molecules.
- Two equations you should know: CuS 04.5H20(blue) = CuSO4 (while) + H20 鉴别复否有水场族在 $C_0 C_{12} \cdot b_{H_20} (pin k) \longrightarrow C_0 C_{12} (blue) + H_20$
- (anhydrous by heating; hydrated form by adding water)

Reversible Reaction in a closed system when equilibrium:

- Rate of forward reaction = rate of reverse reaction
- Concentrations of all reactants and products remain constant and are no longer changing

Equilibrium

≥(b) + Catalyst: no effect Catalyst do not affect the position of equilibrium.

- Le Châtelier's Principle: if conditions of equilibrium are changed, the position of the equilibrium moves to oppose change
- Temperature: Temperature lowered; equilibrium moves in exothermic direction. Temperature increases; equilibrium moves in the endothermic direction.
- Pressure: Pressure raised; equilibrium moves to the side with the fewest gas molecules. Pressure lowered; equilibrium moves to the side with most gas molecules.
- Concentration: Decreasing reactant concentration or increasing product concentration; equilibrium moves to

gas can escape only

the reactant side. Increasing reactant concentration or decreasing product concentration; equilibrium moves to the product side.

Oxidising Agents are Electron Acceptors and Reducing Agents are Electron Donor.

6.11. Haber Process

$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (g) [Exothermic]

Materials (Reactants) in Haber Process fractional distillation Nitrogen: From the air Hydrogen: From the reaction between Methane with Steam

Pressure: 200 atm (20,000 kPa) Catalyst: Iron catalyst

Why are these conditions chosen in the Haber Process?

- 1. Pressure is not too high (Although increased pressure is more yield, however, more pressure will require more expensive equipment, and it can explode).
- 2. Optimum temperature (If lower temperature, more ammonia yield, however too low, the rate is low uneconomical.

6.12. Contact Process

Sulfur Dioxide: Burning sulfur or Roasting Sulfide ores Oxygen: From the air

Conditions

Temperature: 450°C Pressure: 2 atm (200 kPa) Catalyst: Vanadium (V) oxide catalyst V205 Why are these conditions chosen in the Contact Process?

- 1. Pressure is high (Increase pressure, more yield)
- 2. Optimum temperature (If lower temperature, more sulfuric acid yield, however too low, the rate is uneconomical.

6.13. Redox

-> limitation: cannot be applied in condent molecule.

Redox: A simultaneous ox dation and reduction reaction

Oxidation	Reduction
Loss of electrons	Gain of electrons
Gain of oxygen	Loss of oxygen
Loss of hydrogen	Gain of hydrogen

Oxidation number 1 Oxidation number 1 NOTE: Roman Numerals next to an element's name are the oxidation number of an element in a compound, e.g. Iron (II) and Iron (III). The reaction product formula depends on this. Reducing agents are oxidised, and oxidising agents are Stropper reducing opent-cousier to lose et -> mon reduced.

Identifying Redox Reactions

1. Oxidation State:

The oxidation state highlights electron movement in a reaction A^{+} reducing agent $C_{a^{2+}+2e^{-}>C_{a}} A^{+} B^{2+} \rightarrow \sqrt{2}$ eg. CuO + Mg \rightarrow MgO + Cu $M_{a^{-}} \rightarrow M_{a^{2+}+2e^{-}}$ A>B

 $Cu^{2+} + Mg \rightarrow Mg^{2+} + Cu$ [oxide is a spectator and is removed] as it doesn't change its oxidation state]

Here Copper (II) is reduced while magnesium is oxidized; the , is oxidised reaction is redox identify SO2 purple Colorless

2. Indicators:

- Undi -> Mndt • Acidified Aqueous Potassium manganate (VII) is a deep purple oxidising agent; when added to a reducing agent changes from purple to colourless.
- Aqueous Potassium iodide is a reducing, when added to an oxidising agent changes colourless to yellow-brown.

2Br -> Brz cag

displacement reaction

 $X + YSO_4 \rightarrow \sqrt{x} > 2$

$\begin{array}{ccc} \underbrace{\text{yellow-brown.}}_{\text{Co}[orless]} & 2I_{(ap)} & J_{2}(ap) & 2br \rightarrow Br_{2}(ap) \\ \hline \text{Co}[orless] & brown & colorless & oracle \\ \hline \text{Redox Reactions by Changes in Oxidation Number} \end{array}$

Rules	Example
The oxidation numbers of the element in their uncombined state are zero	In H ₂ , the oxidation number of H is "0."
The oxidation number of a monatomic ion is the same as the charge of the ion.	In Zn ²⁺ , the oxidation number is "+2."

 $2 \propto + 4 \times (+) + 2 \times (-2) = 0$ $(\chi + 4 \times (-2) = -2)$ $(\chi = + k)$

Rules	Example
The sum of the oxidation	In H_2O , the oxidation number
numbers in a compound is	of H is +1, and O is -2, (2 x (+1)
zero	+ (1+(-2)) = 0
The sum of the oxidation	In MnO ⁴⁻ the oxidation
numbers in an ion is equal to	number of Mn is +7, therefore
the charge of the ion	(1 x (-7)) + (4 x (-2)) = -1

7. Acids, Bases and Salts

7.1. Properties of Acids

	acidic s	solution	
Acid: a substance that produces hy	drogen ions	s (H ⁺) when	
dissolved in water.			
Definition of Acids: Proton donors .			
Indicators			
PH < 7	Acid	neutral	Proce
litmus	md	nearing	
a methyl orange	red	prope	blue
Thymolphthalein	Colorless	colorless	blue
			J. C
Weak and Strong Acids			
1. Strong acids: completely dis	sociated in	aqueous	
solution producing lots of H	+ ions	ICI. H2SOA, H	HNOZ
	SH. INZ		
e.g: HCl (aq) \rightarrow H ⁺ (aq) + Cl ⁻ (aq)	-11. ()		
2. Weak acids: partially dissoci	iated in aqu	eous solutior	า
producing few H ⁺ ions weak $add - \overline{g}\overline{g}\overline{g}^{*} \rightarrow P$ e.g: CH ₃ COOH (ag) \rightarrow H ⁺ (ag) + CH ₃	H: 3~7(1 3COO ⁻ (aq)	不会了	
Chemical properties			
2HC/cap + Zn(s) -> ZnC/2(ap) + H2(a	y 2Ht (ap) 1	$-Z_n(s) \rightarrow Z_n^{\mathcal{A}}(c)$	p) + Hug)
• Acid + metal → salt + hydrogen	gas	> haclos	Hore
• Acid + base \rightarrow salt + water $\frac{Nab}{0}$	H(aq) + HU(a H(aq) + H ⁺ (q) -> Hzo(l)	1120(1)
 Acid + metal carbonate → salt + 2tcl (a) + blay Corlean → 3db corlean 	· carbon dic	$\frac{1}{1}$ + $\frac{1}{1}$	
$= \frac{2H^{+}(\alpha \rho) + CO_{3}^{2}(\alpha \rho)}{2H^{+}(\alpha \rho) + CO_{3}^{2}(\alpha \rho)}$	$\rightarrow 1+20(1)$	1 (02(G)	
7.2. Properties of Bases	5	<i>J</i>	
> alkali: soluble base			
Bases: substances which neutralize water only.	e acids to fo	orm salt and	
Definition of Bases: They are proto	n acceptors	(form OH ⁻	
ions)		1	
Indicators PH>7		alkaline so.	lution
•			

Weak and Strong Alkalis (Soluble Bases)

1. Strong alkalis: completely dissociates in aqueous

hydroxides

IGCOH)2

CalOH/2

Ba(OH):

DH: 10-13

solution producing lots of OH⁻ ions

LIOH

NAOH

KOH

Group 1 & 2

- e.g.: NaOH (aq) \rightarrow Na⁺ (aq) + OH⁻ (aq)
 - 2. Weak alkalis partially ionize in water producing OH⁻ ions

e.g: NH₄OH (aq) \rightleftharpoons NH₄⁺ (aq) + OH⁻ (aq)

Chemical properties

- Base + acid \rightarrow salt + water (+ CO₂ when base is a metal carbonate)
- Base + ammonium salt \rightarrow salt + ammonia gas + water NOOH + NH4CI -> NOCI + NH3 + H2O

7.3. Neutral

- Neutral substances are pH 7.
- pH scale

pH is the concentration of H⁺ ions per dm³ of solution Universal indicator solution is used to determine the pH of a substance by matching the color change to the pH color

7.4. Types of Oxides

Metal oxides are **basic** in nature e.g. Copper oxide and > CaO+SO2-> CaSO3 (ZSO2, the aid rain) Ioxide Calcium oxide

7 CuO +24 CI -> CuCle+ Heo

- Non-metal oxides are **acidic** in națure e.g. sulfur dioxide <u>10×ide</u> →211a0H + CO2→ Na2CO3 + H20 and carbon dioxide
- Aluminium, and zinc form amphoteric oxides e.g. zinc react with both and & base oxide
- Oxides that react with neither acids nor bases are **neutral** ∞p e.g. nitrous monoxide and carbon monoxide

Colours of Transition Metal Compound

Metal Compounds	Colour
Copper (II) Sulfate	Blue
Copper (II) Oxide	Black
Copper (II) Carbonate	Green
Manganese (IV) Oxide	Black
Iron (II) Salts	Pale Green
Iron (III) Salts	Brown or Orange

Preparation of Soluble & Insoluble Salts

7.5. Soluble Salts

13语很+15周纤

easier to be removed

Method A: Soluble Salts from Excess Insoluble Bases (metal, metal oxide, carbonates) + acid

- 1. Warm acid (increases the speed of reaction)
- 2. Add an excess reactant + stir
- 3. Filter mixture
- 4. Transfer to evaporating basin
- 5. Heat using a Bunsen burner
- 6. Leave to cool until crystallisation point
- 7. Wash crystals with distilled water
- 8. Dry crystals on filter paper

Method B: Titration → 2 🊧 👫 🚮

- 1. Place a known volume of alkali using a volumetric pipette into a conical flask.
- 2. Add indicator (e.g. thymolphthalein)
- 3. Titration: add acid using a burette until the endpoint has reached
- 4. Record the volume of acid added
- 5. Repeat without indicator
- 6. Transfer to evaporating basin
- 7. Heat with Bunsen burner
- 8. Leave to cool until crystallisation point
- 9. Wash crystals with distilled water
- 10. Dry crystals on filter paper

Insoluble Salt

Precipitation: Insoluble Solid forms between two aqueous solutions. $X \times (aq) + X \times (aq) \longrightarrow X \times (s) + X \times (aq)$

- 1. Mix two soluble salts
- 2. Filter to remove the precipitate
- 3. Wash the precipitate with distilled water
- 4. Leave to dry

7.6. Preparation of Salts

Saku 金物

- A salt is a compound formed when a metal replaces all the hydrogen atoms of an acid.
- Naming salts involves two parts; the name of the metal and the acid ending
 - eg. calcium + hydrochloric acid = calcium chloride
- The Water of Crystallisation is the water molecules present in hydrated crystals.

Type of Salt	Acid used
Sulfate	Sulfuric acid
Nitrate	Nitric acid
Chloride	Hydrochloric acid
Ethanoate	Ethanoic acid

• Salts can either be soluble or insoluble

Aways soluble: Nat, Kt, NH4t, NO3 Usually soluble: CI Agol & Pbcl2(s) SO4 Baso4 & PbSO4(s) Usually soluble: CO32, OH

Identification of lons and Gases

7.7. Test for Aqueous Cations

Cations	With aqueous NaOH	With aqueous Ammonia
Aluminum (Al ³⁺)	White soluble precipitate turns colourless in excess	White precipitate, insoluble in excess
Ammonium (NH ₄ ⁺)	Ammonia gas produced on warming	
Calcium (Ca ²⁺)	White precipitate, insoluble in excess	Faint or no precipitate
Copper (Cu ²⁺)	Light Blue precipitate, insoluble in excess	Light Blue precipitate, soluble in excess to give a dark blue solution
Iron(II) (Fe ²⁺)	Green precipitate, insoluble in excess	Green precipitate, insoluble in excess
Iron(III) (Fe ³⁺)	Red-brown precipitate, insoluble in excess	Red-brown precipitate, insoluble in excess
Zinc (Zn ²⁺)	White precipitate, soluble and turns colourless in excess	White precipitate, soluble and turns colourless in excess
Chromium (Cr ³⁺)	Green precipitate, soluble in excess	Green precipitate, insoluble in excess

7.8. Test for Anions

Sulfate ions (**SO₄²⁻)**:

Add dilute nitric acid, then add aq. barium nitrate White precipitate formed

Sulfite ions (SO₃²⁻):

Add acidified aqueous potassium manganate (VII) and heat Colour changes from purple to colourless redox Halide ions:

Add nitric acid, then aqueous silver nitrate

Chloride (Cl ⁻)	White precipitate
Bromide (Br ⁻)	Cream precipitate
lodide (ľ)	Yellow precipitate

Nitrate ions (NO₃⁻):

Add aqueous sodium hydroxide, then add warm aluminum foil

Pungent gas produced turns damp red litmus blue \mathcal{NH}_3

Carbonate ions (CO₃²⁻):

Add dilute hydrochloric acid

If bubbles/ gas produced turn limewater cloudy, carbonate ions present

7.9. Test for Gases

Gas	Test and Test Result	
Ammonia (NH ₃)	Damp red litmus paper turns blue	
Carbon Dioxide (CO ₂)	Turns limewater milky	
Chlorine (Cl ₂)	Bleaches red/blue litmus paper	
Hydrogen (H ₂)	Place lighted splint, squeaky pop	
Oxygen (O ₂)	Place glowing splint, splint relights	
Sulfur Dioxide (SO ₂)	Turns Acidified Aqueous Potassium Manganate (VII) from purple to colourless	

7.10. Flame Tests

Metal lon	Flame Colour	
Lithium	Red	
Sodium	Yellow	
Calcium	Orange-red	
Potassium	Lilac	
Barium	Light-Green	
Copper (II)	Blue-Green	

8. The Periodic Table

- The Periodic table is a method of classifying elements.
- Elements are arranged in order of increasing atomic number (each proceeding element has one more proton)
- Made up of rows called <u>periods</u> and columns called **groups**, the position of an element helps determine its electronic configuration.

- Period number: number of electron shells
- **Group number**: number of outer shell electrons
- Elements in the same group have similar chemical *k* properties.

8.2. Periodic Trends

- 1. The table moves from metals on the left to non-metals on the right.
- 2. Down a group of metals, elements become more reactive.
- 3. With non-metals going down a group, reactivity decreases.

8.3. Group I Properties

- Alkali metals Group I metals: Lithium, sodium and potassium

Chemical Properties	Physical Properties	
Readily react with oxygen and	Good conductors of heat and	
water; <u>stored in oil</u>	electricity	
React violently with chlorine	Soft and easy to cut	
Burst into flames when		
heated with oxygen[red flame		
for lithium; yellow flame for	Shiny when freshly cut	
sodium; lilac flame for		
potassium]	lower m.p.	
Produce soluble white	Melting points decrease down	
compounds.	the group.	
React with water to form	Increase density down the	
alkaline metal and hydrogen	group	
gas	group	

Predicting the properties of other Group I alkali metals: ٠ Rubidium, Caesium and Francium [reactivity increases down the group]

Element	Reaction with Water	
Lithium	Floats and gives off hydrogen gas (effervescence)	
Sodium	Vigorous Reaction and moves very quickly	
Potassium	Explosive Reaction, lilac flame	

 $2L_{1} + 2H_{1} \circ - - 2L_{2} \circ OH + H_{2}$

Halogens 8.4. Group VII Properties

Properties	Patterns
States and Colours, at RTP: Fluorine- Yellow-green gas Chlorine- Pale Yellow-Green gas Bromine- Red-Brown liquid Iodine- Grey-Black solid	Down the group, size, mass and <u>density increase</u>
Poisonous	Down the group, the colour darkens
X2 <u>Diatomic;</u> form halide ions in <u>a displacement reaction</u> <u>Chorine gas bubbled into sodium bromide agineous</u> <u>Cla(g) +2NaBreap ~2Nacleap</u> + Br2(aq) <u>Observation: Colourless ~ orange</u>	Reactivity decreases down the group, because it has to gain an electron, so the closer the electron is to the positive nucleus, the more easily it will be gained, so atoms with fewer shells will react more easily.
Do not conduct electricity	melting point increases down the group

8.5. Transition Elements

Physical Properties

- High melting & boiling points 除SHG
- Malleable and ductile •
- Good conductors of heat & electricity •
- High density •

Chemical Properties

- (transition metal oxide #31)
- Act as catalysts •
- Form coloured compounds
- Variable Oxidation Numbers (Iron (II) or Iron (III))

8.6. Noble Gases

Properties	Uses
Density increases down the	Helium-filling halloons
group	
Monoatomic and colourless	Argon – Lamps
M.P. and B.P. increases the group	Neon – advertising signs
Don't conduct electricity	
Inert & stable due to full outer	
shell electrons	

9. Metals

9.1. Properties of Metals

Physical Properties

A 1. Good conductors of heat (when molten) and electricity

- P 2. High melting and boiling points
- A 3. Malleable and Ductile
- P 4. High densities
- P 5. Solids at room temperature (except mercury in liquid)

Chemical Properties

- 1. Metals + Acids \rightarrow Salt + Hydrogen
- 2. Metal + Oxygen → Metal Oxide
- wery readire + 3. Metal + Water → Metal Hydroxide + Hydrogen
 - 4. Metal + Steam → Metal Oxide + Hydrogen

reactive &

Non-Metals

Properties of Non-Metals

Physical Properties

- A1. Poor thermal conductor
- P2. Poor conductor of electricity (Except graphite)
- A3. Brittle and not malleable
- A. Solids and gases at room temperature (bromine is liquid)

9.2. Uses of Metals

1. Aluminium

- Manufacture of Aircraft/Cars (Low density)
- Food Containers (Resistant to corrosion)
- Overhead electrical cable (Good conductor of electricity/ductile) and (w density)

2. **Zinc**

- Galvanizes Iron = coats it to stop it from rusting (protective coating)
- Alloys brass/bronze
- Batteries
- Sacrificial Protection
- 3. Copper
 - Electrical Wiring (Good conductor of electricity/Ductile)

9.3. Alloys and their Properties

Alloy: a mixture of two or more metals or a metal and nonmetal (S_i , C_i)

> Strength is stronger

• Alloys are useful because they are <u>harder</u> and stronger/useful than pure metal; they can also resist rusting with air and water.

Alloy	Made from	Special Properties	Uses
		Stronger and	Electrical
Brass	Copper and zinc	more resistant to	fittings, car
		corrosion/rusting	radiators

Alloy	Made from	Special Properties	Uses
Stainless steel	Iron, carbon, chromium and nickel	resistant to corrosion/rusting	Kitchen sinks, cutlery, surgical instruments
Harder - J			

- Due to the irregularity in atom sizes and structure, metal alloys, which stop layers from sliding over each other, are stronger.
- This is what the structure of an alloy (a) looks like compared to a pure metal (b).

9.4. Reactivity Series

NOTE: Aluminum - despite its high placement in the reactivity series, it is seemingly unreactive due to its protective aluminium oxide layer

General Peactivity Series (desconding	The Chemical
order of reactivity)	Reactivity of Metals
K - Potassium Na - Sodium Ca - Calcium Mg - Magnesium Al - Aluminum C - Carbon Zn - Zinc Fe - Iron Pb - Lead H - Hydrogen Cu - Copper Ag - Silver Au - Gold	Na ⁺ H ₂ O \rightarrow Mg + H ₂ O (g) \rightarrow Water: 1. metal + cold water \rightarrow metal hydroxide + hydrogen 2. metal + steam \rightarrow metal oxide + hydrogen
Everything above hydrogen can displace hydrogen from its acid, and hydrogen cannot reduce its oxides.	Oxygen: metal + oxygen → metal oxide
Metals above carbon, their oxides cannot be reduced by carbon D判断更正元 acid 和太及後 2半断 displacement 更否能发行	Dilute acids: In a metal and acid reaction, the hydrogen atom in the acid is replaced by the metal atom to form a product of salt and hydrogen

③利断用什么加度可以想到制家属单质

Copper, Silver and Gold cannot react with Dilute Hydrochloric acid because its **too unreactive**

9.5. Displacement Reactions

In these reactions, metals compete for oxygen or anions

- Oxidisation is the loss of electrons
- Reduction is the gain of electrons
- The more reactive metal will displace the less reactive metal from oxygen or an anion.
- If the more reactive metal has oxygen or an anion, no reaction occurs
- The bigger the difference in reactivity between the two metals, the faster the reaction

Example: Mg + $O_2 \rightarrow 2MgO$

Here magnesium is oxidised while the oxygen atom is reduced

9.6. Corrosion of Metals

Rusting: the corrosion of iron and steel to form rust (hydrated iron (III) oxide) via oxidation

The conditions for rusting to occur:

1. Water 2. Air containing oxygen seq-water can speed up the rusting

plastic

Equation for Rusting of Iron

Iron + Water + Oxygen → Hydrated Iron (III) Oxide 4Fe (s) + 2H₂O (l) + 3O₂ (g) \rightarrow 2Fe₂O₃·H₂O (s)

Two Ways of Preventing Rust

1. Barrier Method —> 剧破了, 我该加用3.

- Coating a material to prevent the iron/steel from being in contact with water and oxygen (Painting, Greasing & Plastic Coating)
- 2. Sacrificial Method -> Make White 2. • When more reactive metals corrode to less

reactive metals, they lose electrons in preference to iron.

Galvanisation of Iron

It is the **protection of iron and steel objects** by coating them with a layer of zinc.

The barrier method is due to the zinc layer preventing exposure to air and water and sacrificial protection due to zinc being more reactive than iron, corroding in preference to iron. zinc will be oxidised before iron.

9.7. Extraction of Metals

- Process of separating a particular metal from its ٠ compound; metal ore
- Ore is more difficult to decompose from gold to potassium (expensive)

Metal	Extraction Method	
K - Potassium Na - Sodium Ca – Calcium Mg – Magnesium Al – Aluminum	Reduction via <u>electrolysis</u>	
Carbon		
Zn – Zinc Fe – Iron Pb – Lead	Reducing by Carbon	
Hydrogen		
Cu – Copper Ag – Silver Au – Gold	Occur naturally	

9.8. Extraction of Iron > Silicon (IV) oxide

- Ore hematite (Fe₂O₃) + Impurities
- Burning of coke (Carbon) to **provide heat and produce**

carbon dioxide - Carbon monoxide + reduce iron (II) oxide 3 can reduce iron (II) oxide Ore is crushed and mixed with carbon and limestone (CaCO₃) and transferred into the blast furnace

 $C + O_2 \rightarrow CO_2$ (exothermic)

 $\frac{\sqrt{C} + O_2 \rightarrow CO_2 \text{ (exothermic)}}{\sqrt{CaCO_3} \rightarrow CaO + CO_2 \text{ (thermal decomposition)}}$ $\frac{\sqrt{CO_2} + C \rightarrow 2CO}{\sqrt{CO_2} + C \rightarrow 2CO}$

- 2. Carbon monoxide reduces Iron(III) oxide from the ore to iron
- $\sqrt{\text{Fe}_2\text{O}_3}$ + 3CO \rightarrow 2Fe + 3CO₂
- 3. The Calcium oxide reacts with impurities like silica to form slag (a waste product)

✓ CaO + SiO2 → CaSiO3 Acid - base reaction/neutralisation

4. Uses of slag include making roads and cement

The remaining <u>waste gases</u> that leave the blast furnace are **Carbon Dioxide, Carbon Monoxide, and Nitrogen.**

10. Chemistry of the Environment

10.1. Chemical Tests for Water

	Test	Type of test	Positive result
为改和水	Anhydrous Cobalt (II)	Chemical	Turns from blue to pink
	Chloride کے ک	+ 6 Heo —	$\rightarrow C_{b} U_{2} \cdot bH_{b} (pink)$
	Anhydrous Copper (II)	Chemical	Turns from white to
	Sulfate	4 + 5 Hzz -	$\rightarrow G_{u}SD_{u}$ blue
xcnottike	Test Melting and Boiling Point	Physical	M.P at 0°C and B.P at 100°C

Distilled Water is used in practical chemistry rather than tap Water because it has fewer chemical impurities.

10.2. Natural Sources of Water

Water is an important source in the natural world. However, with the changing world and massive urbanisation. **Our water may contain substances such as:**

- 1. <u>Dissolved Oxygen</u> (this is important for aquatic life)
- 2. Metal Compounds (Provide essential minerals for life however, some are toxic) -> hevey metal.
- 3. <u>Plastics</u> (harm aquatic life)
- 4. Sewage (contains harmful microbes which cause diseases)
- 5. Harmful microbes
- 6. Nitrates fromfertiliserss

7. Phosphate from fertilisers and detergents (leads to deoxygenation of water and damage to aquatic life (Eutrophication)

10.3. Treatment of Domestic Water Supply

- 1. Water is pumped into screens to **remove <u>solid</u>**, <u>insoluble impurities</u>.
- 2. A **sedimentation** process making small clay pieces stick together and are then removed.
- 3. The water then undergoes **filtration** through layers of sand and gravel to **remove larger**, **insoluble debris**.
- 4. Carbon is also added into filtered water to remove taste and odour.
- 5. The **chlorination process** adds chlorine gas bubbled into the water to **kill bacteria and other microbes**; the acidic effect on the water is reversed by adding an alkali, sodium hydroxide.

Uses of Water

Home	Industry
Drinking, cooking and washing	Water jet cutting and water blasting
In car radiators, for gardens and plants	As a solvent in refining ores
	Generating hydroelectricity

10.4. Fertilisers

Fertilisers: Substances added to the soil and taken up by plants to increase crop yield.

Substances contain inside fertilisers are **Ammonium Salts** and Nitrates.

N.P.K - Nitrogen, Phosphorus, and Potassium Fertilisers are found inside fertilisers, essential to **improve plant growth.**

Functions of Elements

- *NH4N0*ر 1. Nitrogen - Makes chlorophyll and protein. Promotes healthy leaves
- 2. Phosphorus Promotes healthy roots $(VH_4)_3 \rho_{0_4}$
- 3. Potassium Promotes growth and healthy fruits and

```
flowers know
```

Reaction with any alkali substance (except ammonia) displaces ammonia from its compound, for example: Calcium hydroxide + Ammonium chloride → Calcium chloride + Ammonia + Water

10.5. Air Quality and Climate

The pie chart below presents the components present in clean air:

- Primary: Nitrogen (78%), Oxygen (21%)
- Secondary: Noble gases (mainly Argon) and Carbon Dioxide (1%)

10.6. Pollutants in Air

Pollutant	Source	Negative impact
Carbon monoxide (<u>CO</u>)	Incomplete combustion of carbon-containing fuels (ex. Internal combustion engines)	Binds with haemoglobin, constricting oxygen supply in cells; leads to fatigue/ death
Carbon Dioxide (CO ₂)	Complete Combustion of Carbon Containing Fuels	Increased global warming leads to climate change.
Methane (<u>CH₄)</u>	Decomposition of vegetation and waste gases from digestion in animals	Increased global warming leads to climate change.
Sulfur Dioxide (SO ₂)	Combustion of fossil fuels which contain sulfur compounds	Causes acid rain.
Nitrogen Oxides (NO ₂)	High temperatures that trigger a reaction between N_2 and O_2 (from air)	Causes respiratory problems and photochemical smog; contributes to acid rain
Lead Compounds	Combustion of leaded fuels	Damages brain and nerve cells in young children

Greenhouse Gases Impact on Global Warming

Energy

1. **Short wavelength radiation** from Sun reaches the

- was absorbed by Earth's surface
 - 2. Some thermal energy is **absorbed and heats oceans/lands**
 - 3. Earth reflected some thermal energy as longer wavelength radiation
 - 4. Greenhouse gases absorb some of the infrared radiation and **re-emit in all directions**
 - 5. Some infrared radiation comes back to Earth's surface, and this reduces the heat loss to space and leads to global warming

To reduce the effect of climate change:

- Planting trees
- Reduction in livestock farming
- Less use of fossil fuels
- Increased use of hydrogen and renewable energy (e.g. wind, solar)

To reduce the effect of acid rain occurring:

- Reduced emissions of sulfur dioxide by using low-sulfur fuels
- Flue-gas desulfurisation with calcium oxide (removing sulfur dioxide from plastic combustion) $@O \neq SO_2 \rightarrow GSO_2$
- Use of catalytic converters in vehicles

10.7. Photosynthesis

Photosynthesis: the reaction between carbon dioxide and water to produce glucose and oxygen in the presence of chlorophyll and using energy from light.

Word Equation: Carbon Dioxide + Water \rightarrow Glucose + Oxygen Balanced Chemical Equation:

 $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$

10.8. Catalytic Converters

- 1. Present in car exhausts; contains transition metal catalysts of platinum and rhodium
- 2. Aids redox reactions to neutralize toxic pollutants formed as a result of incomplete fuel combustion: (a) Carbon Monoxide (b) Nitrogen Oxides (c) Unburned hydrocarbons $4N0 + 30 + 2Hvo \rightarrow 4HNOz$
- 3. Reaction equations: (a) $2CO+O_2 \rightarrow 2CO_2$ (b) $2NO+2CO \rightarrow N_2+2CO_2$
 - (c) $C_8H_{18} + 12\%O_2 \rightarrow 8CO_2 + 9H_2O$

11. Organic Chemistry

11.1. Organic Formulae, Functional Group and Terminology

Suffix	Compound type
-ane	Alkanes Cn H2nt 2
-ene	Alkenes CnHan(n≥
-anol	Alcohols CnH2n+10H
-anoic acid	Carboxylic acid <mark>s C_nH₂₁₁₁ (</mark> 00
-yl/-anoate	Esters (n≥⊙)

Homologous Series: a group of organic compounds that have similar chemical properties due to being part of the:

- Same Functional Group
- Same General Formula
- Differing from One member to the next by a CH_2 unit
- Displaying a trend in physical properties

1. Function

Essential Terminology

- 1. Functional Group: an **atom or group of atoms** that **determine the chemical properties** of a homologous series
- 2. Structural Isomers: compounds with the **same** molecular formula but different structural formula.
- 3. <u>Saturated</u> Compounds: molecules in which all carboncarbon bonds are **single bonds**.
- 4. Unsaturated Compounds: molecules in which **one or more carbon-carbon bonds** are not single.

11.2. Fuels

•

Common fossil fuels include: coal, natural gas [main constituent: methane] and petroleum (1) Petroleum: a mixture of hydrocarbons (Carbon and Hydrogen ONLY) which can be separated into useful fractions by fractional distillation

Going down the fractions

ncreasing	chain length
Increasing	temperature

- Lower volatility (译编人发)
- Increase Boiling Points
- Increase Viscosity (harder to flow)

(米底)		
Petroleum Fraction	Uses	
Refinery gas	heating and cooking	
Gasoline fraction 🧹	fuels for cars 🗸	
Naphtha fraction 🧹	chemical feedstock (raw ma	ater
Kerosene/Paraffin fraction	jet fuel	
Diesel oil/Gas oil fraction	fuel in diesel engines	
Fuel oil fraction	fuel in ships and home heating systems	
Lubricating fraction	lubricants, waxes and polishes	
/ Bitumen	making roads	
•		

Complete & Incomplete Combustion $(O_2 Supp)_{(1)}$

Complete Combustion

A complete combustion reaction with any organic compounds will produce **Carbon Dioxide and Water** as its product. The general equation is: $C_XH_Y + O_2 \rightarrow CO_2 + H_2O$

Incomplete Combustion

An incomplete combustion reaction with any organic compounds will produce <u>Carbon Monoxide and Water</u> as its product. The general equation is: $C_XH_Y + O_2 \rightarrow CO + H_2O$ or $C_xH_y + O_2 \longrightarrow C + H_2O$

11.3. Alkanes

Sharing similar chemical properties

Alkanes: <u>saturated hydrocarbons</u> [single carbon bonds] that are generally <u>unreactive</u>; however, they do undergo combustion reactions

General formula = C_nH_{2n+2} Methane: CH_4 (n=1)Ethane: C_2H_6 (n=2)HH</

Substitution Reaction

2-methylpropane Alkanes go through substitutional reactions, where the atom of another element under UV light replaces the hydrogen atom. (Photochemical) provide enough energy to overtune

• The presence of UV light is to provide activation energy Will 11.5. Alkenes' Addition Reactions

 $\frac{CH_4 + CI_2 \longrightarrow CH_3C[+ HC]}{Compounds = chloromethane}$

11.4. Alkenes

Alkenes: unsaturated hydrocarbons [at least one double bond between 2 carbon atoms]

Have isomers: same molecular formula but different

structural formula (placement of double bond shifts), e.g. but-1-ene and but-2-ene

General formula = $C_n H_{2n}$

Functional group: C=C bond

Catalytic Cracking (Alkane)

 $CH_3 CH = CH CH_3$

but-2-ene

- Hydrocarbon is heated, and vapours are passed over a catalyst (alumina or silica) -> to /wer Za
- Cracking always produces a short-chain compound with a C=C bond (matches the supply of fractions with demand and produces alkene for feedstock.)

e.g. Cracking of ethane will give ethene and hydrogen

Using Bromine water (orange-brown): under dark place

- Saturated: remains orange (unreactive)
- Unsaturated: turns colourless/decolourises

Alkene addition reactions **only form one product.**

1. With Bromine: (the test for saturation - orange browncolourless)

e.g. ethene (g) + bromine (aq) \rightarrow 1,2-dibromoethane (l)

- With steam (hydration): forms alcohols with heat (300°C), pressure (60atm/6000kPa) and an acid catalyst (phosphoric acid)
 e.g. ethene (g) + steam (g) ≠ ethanol (l)
- 3. With hydrogen (hydrogenation): a double bond breaks down to form an alkane with a heat of 200 degrees and a catalyst (nickel)

e.g. ethene (g) + hydrogen (g) \rightarrow ethane (g)

11.6. Alcohols

General formula = $C_nH_{2n+1}OH$ Functional group: <u>OH</u>

CioH22 --> CtoH10 t CoH12 J >gasoline feedstock

Methods of Production

Fermentation of Aqueous Glucose (for Ethanol)	Catalytic Addition of <u>Steam to Ethene</u>
Yeast is added to dissolved glucose. In Products: ethanol, carbon dioxide and the Temperature between 25-35 °C for optimal enzyme activity. Without oxygen	The ethene reacts with steam (reversibly) to form ethanol in the following conditions: 300°C, 60 atm (6000 kPa) \n Catalyst - phosphoric acid [while low temp. Gives better yield, high temp. is used for a faster rate of reaction]
The <u>slow reaction</u> produces a dilute solution that requires processing. Can only be produced in batches	The fast reaction produces pure ethanol. Continuous production (no batches)
Produces greenhouse gas (CO_2)	No greenhouse pollutants
Uses renewable resources	Uses non-renewable resources (crude oil)

Uses of Ethanol:

- Solvent in glues, printing inks & perfumes
- Fuel

11.7. Carboxylic Acids

General formula: C_nH_{2n+1}COOH Functional group: COOH

Ethanoic acid:

- Weak acid with high pH and low dissociation
- Formed by:
 - Bacterial Oxidation of Ethanol (Vinegar Production)
 - With acidified aqueous potassium manganate (VII) (Good Oxidising Agent)

Carboxylic acids react with alcohols (with an acid catalyst/Heat) to give esters, in a condensation reaction, for example:

(or esterification)

- Ethanoic acid + ethanol ≓ ethyl ethanoate + water (alcohol = -yl & carboxylic acid = -oate)
 - Carboxylic Acids also have **different structural isomers**.

11.8. Polymers

- Large molecules are built up from small units known as monomers.
- Monomers are a single unit of a substance.

Example:

	Small units (monomers)	Linkages
Condensatio	Polyester (PET)	Ester
	Polyamide & Protein	Amide

Plastics (PET)

Plastics (polyethylene terephthalate) are made from polymers. However, they are not biodegradable. (NOTE: PET can be hydrolysed back to monomers and re-polymerised)

Environment Challenges caused by Plastics

- 1. Disposal in Landfill sites
- 2. Accumulation in Oceans
- 3. Formations of toxic gases from burning

11.9. Properties of Polymers

- It can be moulded under heat and pressure due to its low • density
- Low conductivity (retain heat) •
- Resistant to corrosion
- Non-biodegradable and lead to plastic waste •

11.10. Addition and Condensation Polymerisation

Addition Polymerisation

- This only occurs in monomers that contain double carbon (C=C) bonds
- Polymers produced using alkene monomers
- Forms only a polymer molecule
- Poly(ethene): is a polymer produced from ethene by addition polymerisation

Double bond splits, and the polymer is formed. (Polymers have no double bonds)

Condensation Polymerisation

- When two different monomers are linked together with the removal of a smaller molecule, usually water (forms one H₂0 molecules per linkage).
 - 1. Nylon (polyamide) is made from a dicarboxylic acid monomer and a diamine monomer (a compound with an NH₂ functional group). Forms amide linkage.

2. **PET** (polyester) is made from a <u>dicarboxylic acid</u> monomer and <u>diols</u> (alcohol with an -OH functional group). Forms **ester linkage**.

11.11. Protein & Natural Polyamides

Proteins act as the natural polyamides formed from amino acids monomers.

General Structure of Amino Acids:

Proteins:

 Proteins contain the same linkages (<u>amide links</u>) as nylon but with different units from amino acid monomers. Their main structure you should know is:

12. Experimental Techniques and Chemical Analysis

12.1. Measurement

Variable	Unit(s)	Apparatus
Time	min/sec	Stopwatch
Temperature	°C	Thermometer
Mass	grams	Balance

Measuring Volume in Liquids

Approximate measure to most accurate measure.

	Use	Structure
Poly(ethene)	Plastic bags and gloves, clingfilm (low density), mugs, bowls, chairs, dustbins (high density)	$n \begin{array}{c} H \\ c \\ - \\ H \\ H \\ H \\ ethene \\ poly(ethene) \\ poly(hene \\ \end{array}$

Measuring Volume in Gases

12.2. Mixture of Substances

- Mixture: A mixture is a substance made from two or more other substances not chemically bonded together
- Solution: A mixture of one or more solutes dissolved in a solvent
- Solute: A substance that dissolved in a solvent
- Solvent: A substance that dissolves a solute
- Saturated Solution: A solution containing the maximum concentration which cannot be dissolved further at a given temperature.

12.3. Acid-Base Titration

A method of quantitative chemical analysis where an acid is added slowly to a base until it has been neutralised.

In Acid-Base Titrations, we must add a few drops of indicator (passes the endpoint) to check whether there are colour changes in the chemical reaction.

Indicators	Colour in Acid	Colour in Neutral	Colour in Base
Thymolphthalein Colourless		Colourless	Blue
Methyl Orange	Red	Orange	Yellow
litmus	Red	purple	blue

12.4. Filtration

Used to separate an insoluble solid from a liquid

- The mixture goes through a funnel with filter paper into a flask.
- Insoluble residue remains in the funnel
- Filtrate flows through the funnel and gets collected in the flask or test tube or a beaker

12.5. Crystallisation

Used to separate dissolved solid from a solution

- The solution is heated to increase concentration (solvent evaporates)
- A drop of solution is placed on a slide to check for crystal formation
- The solution is left till it reaches the crystallisation point.
- Crystals are filtered from the solution, washed with distilled water, and dried between the filter paper.

12.6. Simple Distillation

Used to separate a solvent from a solution

- The impure liquid is heated in a round bottom flask
- When it boils, the steam rises into the attached condenser
- Condenser cools the steam to a pure liquid, and it drops into the beaker
- A thermometer is placed to ensure the **highest boiling point is not exceeded.**

12.7. Fractional Distillation

Used to separate miscible liquids

- Mixture is heated
- Substances, due to their <u>different boiling points</u>, rise in different fractions.
- A mixture of gases condenses on the beads in the fractional column.

- The beads are heated to the boiling point of the lowest substance so that the substance being removed cannot condense on the beads.
- The other substances continue to condense and will drip back into the flask.
- The beaker can be changed after every fraction

12.8. Chromatography

Used to separate substances in a solvent with different solubilities.

Do not dissolve in solven to integrer the results

- 1. Drop the substance onto the start line (pencil) drawn on chromatography paper.
- 2. Paper is placed in a beaker with solvent; the paper must touch the surface of the solvent (**water or ethanol**) while the line must be above the liquid.
- 3. The solvent travels up the paper.
- 4. Different solubilities lead to different travel rates (**high** solubility -> high travel rate)
 - The stationary phase is the material on which separation takes place
 - The mobile phase is the mixture you want to separate, dissolved in a solvent.

- Interpreting simple chromatograms: Chromatograms are the visual outputs on the chromatography paper
 - Number of rings/dots = number of substances
 - If two dots travel the same distance up the paper, they are the **same substance**.
 - The pure substance only gives one spot.
- Retention Value:

Used to identify a substance, calculated by the formula:

$$Rf Value = \frac{Distance moved by substance}{Distance moved by solvent}$$

Locating Agents

- Used to make colourless chromatograms visible
 - Dry paper in the oven
 - Spray it with locating an agent
 - Heat it for 10 minutes in the oven

12.9. Separation Techniques

- Can be done by dissolving one in an appropriate solvent
- Then filter one and extract the other from the solution by evaporation
- If one solid is magnetic, it can use a magnet, e.g. sand and iron fillings

nt	Component 1	Component 2	Technique	Example
	Solid	Solid	Use a solvent	Sand and Salt
	Insoluble Solid	Liquid	Use Filtration - Separating the solid and the residue	Copper (II) Oxide and Water
	Soluble Solid	Liquid	Crystallization - Liquid is evaporated to leave the solid	Copper (ll) sulfate from water
	Liquid	Liquid (Miscible)	Distillation (2 Liquids) or Fractional Distillation (More than two liquids)	Ethanol & Water (Simple), Crude Oil (Fractional Distillation)

12.10. Purification

Purity in Substances

• Assessing purity

Pure substances	Have a definite, sharp m.p./b.p.
Impure substances	Have a lower m.p and a higher b.p

This assessment of substance purity is important, especially in food consumption, as its intake can be dangerous.