Review topic: Calculation

	Ways to practice skills	R	А	G	Comment
3.1 Formulae					
1	State the formulae of the elements and compounds named in the subject content				
2	Define the molecular formula of a compound as the number and type of different atoms in one molecule				
3	Deduce the formula of a simple compound from the relative numbers of atoms present in a model or a diagrammatic representation				
4	Construct word equations and symbol equations to show how reactants form products, including state symbols				
5	Define the empirical formula of a compound as the simplest whole number ratio of the different atoms or ions in a compound				
6	Deduce the formula of an ionic compound from the relative numbers of the ions present in a model or a diagrammatic representation or from the charges on the ions				
7	Construct symbol equations with state symbols, including ionic equations				
8	Deduce the symbol equation with state symbols for a chemical reaction, given relevant information				

	Ways to practice skills	R	А	G	Comment
3.2 Relative masses of atoms and molecules					
1	Describe relative atomic mass, Ar, as the average mass of the isotopes of an element compared to 1/12 th of the mass of an atom of ¹² C				
2	Define relative molecular mass, M_r , as the sum of the relative atomic masses. Relative formula mass, M_r , will be used for ionic compounds.				
3	Calculate reacting masses in simple proportions. Calculations will not involve the mole concept				

	Ways to practice skills	R	А	G	Comment
3.3 The mole and the Avogadro constant					
1	State that concentration can be measured in g/dm ³ or mol/dm ³				
2	State that the mole, mol, is the unit of amount of substance and that one mole contains 6.02×10^{23} particles, e.g. atoms, ions, molecules; this number is the Avogadro constant				
3	Use the relationship amount of substance $\frac{\max g}{\max g}$ to calculate: a. amount of substance molar mass (g/mol) b. mass c. molar mass d. relative atomic mass or relative molecular / formula mass e. number of particles, using the value of the Avogadro constant				
4	Use the molar gas volume, taken as 24 dm ³ at room temperature and pressure, r.t.p. in calculations involving gases				
5	Calculate stoichiometric reacting masses, limiting reactants, volumes of gases at r.t.p., volumes of solutions and concentrations of solutions expressed in g/dm ³ and mol/dm ³ , including conversion between cm ³ and dm ³				
6	Use experimental data from a titration to calculate the moles of solute, or the concentration or volume of a solution				
7	Calculate empirical formulae and molecular formulae, given appropriate data				
8	Calculate percentage yield, percentage composition by mass and percentage purity, given appropriate data				

	Ways to practice skills	R	А	G	Comment
12.2 Acid-base titrations					
1	Describe an acid-base titration to include the use of a: a. burette b. volumetric pipette c. suitable indicator				
2	Describe how to identify the end-point of a titration using an indicator				