Review topic: Calculation

Ways to practice skills
 R
 G
 Comment

3.1 Formulae

State the formulae of the elements and compounds named in the subject content Define the molecular formula of a compound as the number and type of different atoms in one molecule
Deduce the formula of a simple compound from

or a diagrammatic representation

Construct word equations and symbol equations to show how reactants form products, including state symbols
Define the empirical formula of a compound as the simplest whole number ratio of the different atoms or ions in a compound
Deduce the formula of an ionic compound from the relative numbers of the ions present in a model or a diagrammatic representation or from the charges on the ions
Construct symbol equations with state symbols, including ionic equations
Deduce the symbol equation with state symbols for a chemical reaction, given relevant information

\square	\square	\square	
\square	\square	\square	
\square	\square	\square	
\square	\square	\square	
\square	\square	\square	\square
\square	\square	\square	
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	

3.2 Relative masses of atoms and molecules

Describe relative atomic mass, Ar, as the average mass of the isotopes of an element compared to $1 / 12^{\text {th }}$ of the mass of an atom of ${ }^{12} \mathrm{C}$ Define relative molecular mass, M_{r}, as the sum of
2 the relative atomic masses. Relative formula mass, M_{r}, will be used for ionic compounds.

3 Calculate reacting masses in simple proportions. Calculations will not involve the mole concept

3.3 The mole and the Avogadro constant

c. molar mass
d. relative atomic mass or relative molecular / formula mass
e. number of particles, using the value of the Avogadro constant
Use the molar gas volume, taken as $24 \mathrm{dm}^{3}$ at
room temperature and pressure, r.t.p. in calculations involving gases
Calculate stoichiometric reacting masses, limiting reactants, volumes of gases at r.t.p., volumes of solutions and concentrations of solutions expressed in $\mathrm{g} / \mathrm{dm}^{3}$ and $\mathrm{mol} / \mathrm{dm}^{3}$, including conversion between cm^{3} and dm^{3}
Use experimental data from a titration to calculate
the moles of solute, or the concentration or volume of a solution
Calculate empirical formulae and molecular formulae, given appropriate data Calculate percentage yield, percentage
8 composition by mass and percentage purity, given appropriate data
12.2 Acid-base titrations

Describe an acid-base titration to include the use of a :
1 a. burette

b. volumetric pipette
c. suitable indicator

Describe how to identify the end-point of a titration using an indicator

