
Calculation

1. The diagrams show liquids in a burette and a measuring cylinder.

burette

measuring cylinder

Which row shows the correct readings for the burette and the measuring cylinder?

	burette	measuring cylinder
Α	27.8	42
В	27.8	44
С	28.2	42
D	28.2	44

The gas hydrazine has the molecular formula N₂H₄.

Hydrazine burns in air to form nitrogen gas and steam.

$$N_2H_4(g) \ + \ O_2(g) \ \to \ N_2(g) \ + \ 2H_2O(g)$$

Which statements are correct?

- 1 mole of hydrazine gives 72 dm3 of gaseous products when it reacts with oxygen at room temperature and pressure.
- 2 The empirical formula of hydrazine is NH₂.
- 3 The total number of atoms in 1 mole of hydrazine is 6 × the Avogadro constant.
- The volume of 1 mole of hydrazine at room temperature and pressure is $6 \times 24 \, dm^3$.
- 1, 2 and 3
- **B** 1 and 2 only **C** 2, 3 and 4
- D 3 and 4 only

3. Copper(II) carbonate is broken down by heating to form copper(II) oxide and carbon dioxide gas.

The equation for the reaction is shown.

$$CuCO_3 \rightarrow CuO + CO_2$$

31.0g of copper(II) carbonate are heated until all of the contents of the test-tube have turned from green to black.

The yield of copper(II) oxide formed is 17.5 g.

What is the percentage yield?

- A 19.02%
- **B** 21.88%
- 56.50%
- 87.50%

4. Aluminium reacts with fluorine.

$$xAl(s) + yF_2(g) \rightarrow zAlF_3(s)$$

Which values of x, y and z balance the equation?

	х	у	z
Α	1	2	1
В	2	3	2
С	3	2	3
D	4	3	4

5. Carbon monoxide burns in oxygen to produce carbon dioxide.

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

Which mass of carbon dioxide is produced from 14g of carbon monoxide?

- **A** 22 g
- **B** 28g
- **C** 44 g
- **D** 88g

6. Which equations are balanced?

- 1 Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂
- 2 $ZnCO_3 + 2HCl \rightarrow ZnCl_2 + CO_2 + 2H_2O$
- $3 \quad \text{Mg(NO}_3)_2 \ + \ \text{NaOH} \ \rightarrow \ \text{Mg(OH)}_2 \ + \ 2\text{NaNO}_3$
- 4 $CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + H_2O + CO_2$
- **A** 1 and 2
- **B** 1 and 4
- **C** 2 and 3
- **D** 3 and 4

*

7. Calcium carbide, CaC₂, reacts with water to form ethyne, C₂H₂, and calcium hydroxide.

The equation for the reaction is shown.

$$CaC_2(s) + 2H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(s)$$

Which volume of ethyne is produced when 6 g of water react completely with calcium carbide?

- $\mathbf{A} \quad 4 \, \mathrm{dm}^3$
- **B** 8 d m³
- **C** 36 dm³
- **D** 72 dm³

8. Aqueous iron(III) sulfate and aqueous sodium hydroxide react to give a precipitate of iron(III) hydroxide and a solution of sodium sulfate.

What is the balanced equation for this reaction?

- A $Fe_2(SO_4)_3(aq) + 2NaOH(aq) \rightarrow Fe(OH)_3(s) + Na_2SO_4(aq)$
- **B** $Fe_2(SO_4)_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3Na_2SO_4(aq)$
- \mathbf{C} Fe₂(SO₄)₃(aq) + 6NaOH(aq) \rightarrow 2Fe(OH)₃(s) + 3Na₂SO₄(aq)
- $D \quad 2Fe_2(SO_4)_3(aq) + 6NaOH(aq) \rightarrow 4Fe(OH)_3(s) + 6Na_2SO_4(aq)$

9. The equation for the reaction between sodium carbonate and dilute hydrochloric acid is shown.

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$

What is the maximum volume of carbon dioxide produced when 26.5 g of sodium carbonate react with dilute hydrochloric acid?

- \mathbf{A} 6 dm³
- **B** 12 dm³
- **C** 18 dm³
- **D** 24 dm³
- IO. A student put 25.0 cm³ of dilute hydrochloric acid into a conical flask.

The student added 2.5 g of solid sodium carbonate and measured the change in temperature of the mixture.

Which apparatus does the student need to use to obtain the most accurate results?

- A balance, measuring cylinder, thermometer
- B balance, pipette, stopwatch
- C balance, pipette, thermometer
- D burette, pipette, thermometer
- II. The equation for the reaction between barium chloride solution and dilute sulfuric acid is shown.

$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$$

Which row shows the state symbols for this equation?

	BaCl ₂	H ₂ SO ₄	BaSO ₄	2HC1
Α	(aq)	(aq)	(s)	(aq)
В	(aq)	(1)	(s)	(aq)
С	(1)	(aq)	(s)	(1)
D	(aq)	(1)	(aq)	(I)

12. A compound is analysed and found to contain 85.7% carbon and 14.3% hydrogen.

What is its empirical formula?

- A CH
- B CH₂
- \mathbf{C} C_2H_4
- D C_6H
- 13. The equation for the reaction between phosphorus and oxygen is shown.

$$xP_4 + yO_2 \rightarrow zP_2O_5$$

Which values of x, y and z balance the equation?

	x	У	z
Α	1	5	2
В	1	10	2
С	2	5	2
D	2	10	1

14. The relative molecular mass of an alcohol is 88.

Its percentage composition by mass is: C, 54.5%; H, 9.1%; O, 36.4%.

Which row shows the empirical formula and molecular formula for this alcohol?

	empirical formula	molecular formula
Α	C ₂ H ₄ O	C ₂ H ₄ O
В	C ₂ H ₄ O	C ₄ H ₈ O ₂
С	C ₄ H ₈ O ₂	C ₄ H ₈ O ₂
D	C ₄ H ₈ O ₂	C ₂ H ₄ O

A 32

B 64

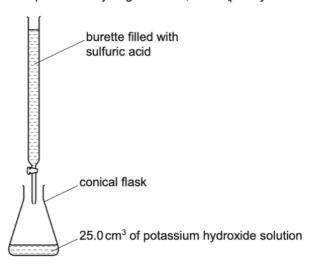
		empirical formu	la molecula	r for	mula							
	Α	C ₂ H ₄ O	C ₂ l	H ₄ O								
	В	C ₂ H ₄ O	C₄F	1 ₈ O ₂								
	С	C ₄ H ₈ O ₂	C₄F	I ₈ O ₂								
	D	C ₄ H ₈ O ₂	C ₂ l	H ₄ O								
15.	15. A compound contains 34.5% calcium, 24.1% silicon and 41.4% oxygen by mass.											
	What is its empirical formula?											
16		Ca ₂ SiO ₃ B	CaSiO ₃	C	CaSi ₂ C		D	CaSiO ₆				
		quantities of chem		xacı	iy with r	io reacta	เกเรา	eit over?				
		2g of carbon and 1										
		2g of carbon and 4										
		2g of magnesium a										
	D 24	4 g of magnesium a	and 16g of oxyge	en								
17.	A com	pound, X, contains	s 40.0% carbon	6.7	% hydro	gen and	d 53.	3% oxygen by mass.				
	The re	elative molecular m	nass, $M_{\rm r}$, of X is	60.								
	What	is the molecular fo	rmula of X?									
	A C	H ₂ O B	CH₄O	С	C ₂ H ₄ O		D	$C_2H_4O_2$				
								_				
18.	25 cm	³ of 0.1 mol/dm ³ hy	ydrochloric acid	exa	ctly neu	tralise 20	0 cm ³	³ of aqueous sodium hydroxide.				
	The e	quation for this rea	ction is:									
			NaOH +	НС	l → Na	aCl + H	₂ O					
	What is the concentration of the sodium hydroxide solution?											
	A 0.080 mol/dm ³											
	B 0.800mol/dm^3											
	C 0.125 mol/dm ³											
	D 1.	.25 mol/dm³										
19.	A sam	ple of 16.0g of a n	netal oxide. MO.	is re	educed	to 12.8a	of th	ne metal, M.				
•						9						
	What is the relative atomic mass, A _r , of M?											

D 128

C 80

20	20. The equation for the reaction between calcium carbonate and hydrochloric acid is shown.									
	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$									
		How many moles of calcium carbonate will give 24 cm ³ of carbon dioxide when reacted with an excess of the acid?								
	Α	1 mol	В	0.1 mol	С	0.01 mol	D	0.001 mol		
21.		alysis of a compo gnesium and 5.6			n m	agnesium and	nitro	gen showed it contained 14.4g of		
	Wh	at is the empirica	al fo	mula of the com	ipou	nd?				
	Α	Mg_2N_3	В	Mg_3N_2	С	Mg_4N_6	D	Mg_6N_4		
22.	An	excess of zinc is	ado	led to 100 cm ³ of	f 1.0	mol/dm³ hydro	ochloi	ric acid.		
	The	e equation for the	e rea	ction is:						
				Zn + 2	HC1	\rightarrow ZnC l_2 +	H ₂			
	Wh	at is the maximu	m v	olume of hydrog	en e	volved at room	temp	perature and pressure?		
	Α	1.2 dm ³	В	2.0dm^3	С	$2.4\mathrm{dm}^3$	D	24 dm ³		
23.	Ber	nzene is a liquid	with	molecular formu	ıla C	6H ₆ .				
	Eth	ene is a gas with	n mo	lecular formula (C₂H₄					
	Wh	ich statement is	corr	ect?						
	Α	1 mole of benze	ene a	and 1 mole of et	hene	e contain the sa	ame n	number of atoms.		
	В	1 mole of benze and pressure.	ene	and 1 mole of e	then	e both have a	volun	ne of 24 dm ³ at room temperature		
	С	Both benzene a	and e	ethene have the	sam	e empirical for	mula.			
	D	The number of	carb	on atoms in 0.5	mole	es of ethene is	equa	I to the Avogadro constant.		
24.	Soc	dium hydrogenca	ırbor	nate undergoes t	therr	nal decomposi	tion a	s shown.		
				2NaHCO ₃ -	→ Na	a ₂ CO ₃ + CO ₂	+ H ₂	0		
		at is the maxin			ım d	carbonate that	can	be made from 0.100 moles of		
	Α	4.15g	В	5.30 g	С	10.6 g	D	21.2g		
25.	Wh	ich sample conta	ains	the greatest nun	nber	of molecules?				
	Α	4 g of hydrogen								
	В	18 g of water								
	С	24 dm ³ of oxyge	en							
	D	66 g of carbon dioxide								

26		dium carl own.	bonate s	solut	tion reacts	with dilu	te hydrochl	oric acid.	. The equation	for the reaction is
			Na ₂ 0	CO ₃	(aq) + 2H	IC <i>l</i> (aq) -	→ 2NaCl(a	q) + CO:	₂ (g) + H ₂ O(l)	
	Ex	Excess sodium carbonate is added to 10.0 cm³ of 0.10 mol/dm³ hydrochloric acid.								
	Wł	nich volun	ne of ca	rbon	dioxide g	as is mad	e?			
	A	12 cm ³		В	24 cm ³	С	12 000 cm	³ D	24 000 cm ³	
27.	The	e equation	n shows	the	complete	combustic	on of propar	ne.		
					$C_3H_8(g)$	+ 5O ₂ (g)	\rightarrow 3CO ₂ (g	g) + 4H ₂ (O(I)	
	Wh	ich stater	ment is o	corre	ect?					
	Α	10 cm ³ c	of propar	ne c	annot burr	if less th	an 50 cm³ o	of oxygen	is present.	
	В	10 cm ³ c	of propar	ne w	ould produ	uce 40 cm	³ of liquid w	ater.		
	С	100 cm ³	of oxyg	en v	vould be su	ufficient to	react comp	pletely wi	th 20 cm ³ of pro	pane.
	D	This rea	ction wo	ould	result in a	n increase	e in the volu	ime of ga	s.	
ე მ	Soc	dium hydr	ovide re	acts	s with sulfu	ıric acid				
2 0,										
	me	e equation	i for the	rea	ction is sho					
							$_{4} \rightarrow Na_{2}SC$			
		ich volu furic acid?		0.4	mol/dm ³	sodium	hydroxide	reacts	with 50.0 cm ³	of 0.1 mol/dm ³
	Α	12.5 cm ³	3	В	25.0 cm ³	С	$50.0\mathrm{cm}^3$	D	$100.0\mathrm{cm}^3$	
29,	Wł	nat is the	relative	mol	ecular mas	ss, M _r , of	butanol?			
	A	15		В	37	С	74	D	148	
30	, Th	e chemica	al formu	lae (of two sub	stances, \	N and X, ar	e given.		
		W	NaA <i>l</i> S	i ₃ O ₈						
		X	CaAl ₂ S	Si ₂ O ₈	8					
	W	nich state	ments a	re c	orrect?					
		1	W and	Хс	ontain the	same am	ount of oxy	gen.		
		2	W conf	tains	s three time	es as mu	ch silicon as	s X.		
		3	X conta	ains	twice as n	nuch alun	ninium as W	/ .		
	Α	1 and 2		В	1 and 3	С	2 and 3	D	1, 2 and 3	
		-								


- 31. What is the concentration of a solution containing 1.0g of sodium hydroxide in 250 cm³ of solution?
 - \mathbf{A} 0.025 mol/dm³
 - **B** 0.10 mol/dm³
 - C 0.25 mol/dm³
 - **D** 1.0 mol/dm³
- 32. Aluminium oxide has the formula Al_2O_3 .

Which statement about aluminium oxide is correct?

- A 2g of aluminium atoms are combined with 3g of oxygen atoms.
- $\,{\bf B}\,\,$ $\,$ 2 g of aluminium atoms are combined with 3 g of oxygen molecules.
- C Aluminium oxide has a relative molecular mass of 102.
- **D** Pure aluminium oxide contains a higher mass of oxygen than of aluminium.

33, (a)	A co	ompound, X , contains 55.85% carbon, 6.97% hydrogen and 37.18% oxygen.	
	(i)	How does this prove that compound X contains only carbon, hydrogen and oxygen?	
	(ii)	Use the above percentages to calculate the empirical formula of compound X .	[1]
	(iii)	The $M_{\rm r}$ of ${\bf X}$ is 86. What is its molecular formula?	[2]
			[2]
34, (d)		panol reacts with methanoic acid to form the ester propyl methanoate. $ CH_3CH_2CH_2OH \ + \ HCOOH \ \rightarrow \ HCOOCH_2CH_2CH_3 \ + \ H_2O $ g of methanoic acid was reacted with 6.0 g of propanol.	
	(i)	Calculate the M_r of methanoic acid =	[1]
	(ii)	Calculate the M_r of propanol =	[1]
	(iii)	Determine which one is the limiting reagent. Show your reasoning.	
	(iv)	Calculate the maximum yield in grams of propyl methanoate, M_r = 88.	[1]

35. Two salts can be made from potassium hydroxide and sulfuric acid. They are potassium sulfate, K₂SO₄, and the acid salt potassium hydrogen sulfate, KHSO₄. They are both made by titration.

(a) 25.0 cm³ of potassium hydroxide, concentration 2.53 mol/dm³, was neutralised by 28.2 cm³ of dilute sulfuric acid.

$$2KOH(aq) + H2SO4(aq) \rightarrow K2SO4(aq) + 2H2O(I)$$

Calculate the concentration of the sulfuric acid.

number of moles of KOH used =

number of moles of H₂SO₄ needed to neutralise the KOH =

concentration of dilute sulfuric acid = mol/dm3

[3]

3b. (c) The equation for the decomposition of copper(II) nitrate is given below.

$$2Cu(NO_3)_2 \rightarrow 2CuO + 4NO_2 + O_2$$

(ii) Copper(II) nitrate forms a series of hydrates with the formula Cu(NO₃)₂.xH₂O.
 All these hydrates decompose to form copper(II) oxide.
 1 mole of Cu(NO₃)₂.xH₂O forms 1 mole of CuO.

What is meant by 1 mole of a substance?

_______[2]

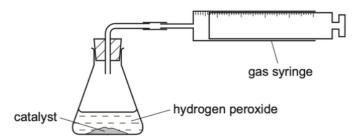
(iii) 7.26 g of a hydrate, Cu(NO₃)₂.xH₂O, formed 2.4 g copper(II) oxide.

number of moles of CuO formed =

number of moles of $Cu(NO_3)_2$. xH_2O in 7.26 g =

mass of 1 mole of $Cu(NO_3)_2.xH_2O =g$

mass of 1 mole of Cu(NO₃)₂ is 188 g


the value of x in this hydrate =

[4]

Ethanoli	is manufactured from glucose, $C_6H_{12}O_6$, by fermentation according to the following equation
	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$
(b) In a	n experiment, 30.0 g of glucose was fermented.
(i)	Calculate the number of moles of glucose in 30.0 g.
	mol [2]
(ii)	Calculate the maximum mass of ethanol that could be obtained from 30.0 g of glucose.
	g [2]
	Calculate the volume of carbon dioxide at room temperature and pressure that can be obtained from $30.0\mathrm{g}$ of glucose.
	dm³ [1]

38. A student studies the rate of decomposition of hydrogen peroxide using the apparatus shown. The student uses 20 cm³ of 0.1 mol/dm³ hydrogen peroxide and 1.0 g of manganese(IV) oxide.

The student measures the volume of oxygen given off at regular time intervals until the reaction stops. A graph of the results is shown.

10	\ /i\	Calculate the number	of moles of hydron	on norovido usod ir	this experiment
(C) (1)	Calculate the number	of moles of hydrog	jen peroxiae usea ir	ı tnis experiment.

		mol [1]

(ii) Use your answer to (c)(i) and the equation to calculate the number of moles of oxygen produced in the reaction.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

(iii) Calculate the volume (at r.t.p.) of oxygen produced.

(iv) What would be the effect on the volume of oxygen produced if the mass of catalyst was increased?

.....[1]

(v) Deduce the volume of oxygen that would be produced if 20 cm³ of 0.2 mol/dm³ hydrogen peroxide was used instead of 20 cm³ of 0.1 mol/dm³ hydrogen peroxide.

..... dm³ [1]

39, (a)	Sodium nitrate is a white crystalline solid. When heated it melts occurs.	and the following reaction
	$2NaNO_3(I) \rightarrow 2NaNO_2(I) + O_2(g)$	
	A 3.40 g sample of sodium nitrate is heated.	
	Calculate the	
	 number of moles of NaNO₃ used, 	
	 number of moles of O₂ formed, volume of O₂ formed, in dm³ (measured at r.t.p.). 	mol
		dm³ [3]

- 10 cm³ of a gaseous hydrocarbon, C_xH_y, are burned in 100 cm³ of oxygen, which is an excess of oxygen.
- After cooling to room temperature and pressure, there is 25 cm³ of unreacted oxygen, 50 cm³ of carbon dioxide and some liquid water.

All volumes are measured under the same conditions of temperature and pressure.

(i)	What is meant by an excess of oxygen?	
		[1]
ii)	What was the volume of oxygen that reacted with the hydrocarbon?	
		[1]

volume of

(iii) Complete the table below to express the smallest whole number ratio of

volume of

number ratio of volumes

	hydrocarbon reacted	oxygen reacted	produced
	volume of hydrocarbon reacted	volume of oxygen reacted	volume of carbon dioxide produced
smallest whole			

[1]

volume of

carbon dioxide

(iv) Use your answer to (a)(iii) to find the mole ratio in the equation below. Complete the equation and deduce the formula of the hydrocarbon.

$$......C_x H_y(g) \ + \O_2(g) \ \to \CO_2(g) \ + \H_2O(I)$$

formula of hydrocarbon =[2]

13

$2HCl(aq) + Na_2CO_3(aq) \rightarrow 2NaCl(aq) + H_2O(I) + CO_2(g)$
(a) Explain why effervescence is seen during the reaction.
[1]
(b) Dilute hydrochloric acid was titrated with sodium carbonate solution.
 10.0 cm³ of 0.100 mol/dm³ hydrochloric acid were placed in a conical flask. A few drops of methyl orange indicator were added to the dilute hydrochloric acid. The mixture was titrated with sodium carbonate solution. 16.2 cm³ of sodium carbonate solution were required to react completely with the acid.
(i) What colour would the methyl orange indicator be in the hydrochloric acid?
[1]
(ii) Calculate how many moles of hydrochloric acid were used.
mol [1]
(iii) Use your answer to (b)(ii) and the equation for the reaction to calculate the number of moles of sodium carbonate that reacted.
mol [1]
(iv) Use your answer to (b)(iii) to calculate the concentration of the sodium carbonate solution in mol/dm³.
mol/dm³ [2]
(c) In another experiment, 0.020 mol of sodium carbonate were reacted with excess hydrochloric acid.
Calculate the maximum volume (at r.t.p.) of carbon dioxide gas that could be made in this reaction.
dm³ [3]

纠, Dilute hydrochloric acid reacts with sodium carbonate solution.

42,	(e)	Iso	prene is a naturally occurring hydrocarbon.
		(i)	Explain how the name of isoprene suggests that it contains a C=C double bond.
			[1]
		(ii)	A sample of isoprene had the following composition by mass: C, 88.24%; H, 11.76%.
			Calculate the empirical formula of isoprene. Show all your working.
			empirical formula = [3]
	((iii)	What additional information would be required to calculate the molecular formula of isoprene?
			[1]
43.	Chle	orine	e, bromine and iodine are halogens.
	(a)		orine can be made in the laboratory by heating manganese(IV) oxide with concentrated rochloric acid.
			$MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$
		Cal	culate the volume of $8.00\mathrm{mol/dm^3~HC}l(\mathrm{aq})$ needed to react with $3.48\mathrm{g}$ of $\mathrm{MnO_2}$.
		•	moles of MnO ₂ used
			mol
		•	moles of HCl needed
			mol
			volume of HCl needed
			cm³

44.		ead(II) nitrate is heated, two gases are given off and solid lead(II) oxide remains. uation for the reaction is shown.
		$2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)$
	(a) Ca	alculate the M_r of lead(II) nitrate.
		[1]
	(b) 6.6	62 g of lead(II) nitrate are heated until there is no further change in mass.
	(i)	Calculate the mass of lead(II) oxide produced.
	(ii)	g [2] Calculate the volume of oxygen, ${\rm O_2}$, produced at room temperature and pressure (r.t.p.).
		dm³ [2]

45,	(b)	(i)	5.95 g of cobalt(II) carbonate were added to 40 $\rm cm^3$ of hydrochloric acid, concentration 2.0 mol/dm³.					
			Calculate the maximum yield of $cobalt(II)$ chloride-6-water and show that the $cobalt(II)$ carbonate was in excess.					
			$CoCO_3 + 2HCl \rightarrow CoCl_2 + CO_2 + H_2O$					
			$CoCl_2 + 6H_2O \rightarrow CoCl_2.6H_2O$					
			maximum yield:					
			number of moles of HCl used =					
			number of moles of CoCl ₂ formed =					
			number of moles of CoCl ₂ .6H ₂ O formed =					
			mass of one mole of $CoCl_2.6H_2O = 238g$					
			maximum yield of $CoCl_2.6H_2O =g$					
			to show that cobalt(II) carbonate is in excess:					
			number of moles of HCl used = (use your value from above)					
			mass of one mole of CoCO ₃ = 119g					
			number of moles of $CoCO_3$ in $5.95g$ of $cobalt(II)$ carbonate =					
		(ii)	Explain how these calculations show that $cobalt(II)$ carbonate is in excess.					

[1]

		$BaCO_3(s) \rightarrow BaO(s) + CO_2(g)$
(a)	As	student heated a 10.0g sample of barium carbonate until it was fully decomposed.
	(i)	Calculate the number of moles of barium carbonate the student used.
		moles of barium carbonate = mol [2]
	(ii)	Calculate the volume of carbon dioxide gas produced at room temperature and pressure. Give your answer in dm ³ .
		volume of carbon dioxide = dm³ [1]
(b)) Th	e student added 2.00 g of the barium oxide produced to water.
		BaO + $H_2O \rightarrow Ba(OH)_2$
		clculate the mass of barium hydroxide that can be made from 2.00 g of barium oxide. The $M_{\rm r}$ Ba(OH) $_{\rm 2}$ is 171.
		mass of barium hydroxide = g [1]
(c)		.50 g sample of barium hydroxide was dissolved in water. The total volume of the solution s 100 cm ³ .
		5.0 cm³ portion of the barium hydroxide solution was titrated against hydrochloric acid. The ume of hydrochloric acid required was 18.75 cm³.
		$Ba(OH)_2 + 2HCl \rightarrow BaCl_2 + 2H_2O$
	(i)	Calculate how many moles of barium hydroxide were in the $25.0\mathrm{cm^3}$ portion used in the titration.
		moles of barium hydroxide = mol [1]
	(ii)	Calculate the concentration of the hydrochloric acid used.
		concentration of hydrochloric acid = mol/dm³ [2]

4b. Barium carbonate decomposes when heated.

47.	(b)		gnesium sulfate cryst gnesium sulfate crystals						some	hydrated
			mass of hydrated magr	esium	sulfate crysta	als = 4.92 (9			
			mass of water removed			= 2.52	3			
		(i)	Calculate the number of	f moles	of water rer	noved.				
						moles o	of water = .			mol [1]
		(ii)	Calculate the number of The M_r of anhydrous m				ium sulfate	remaini	ng in the	e crucible.
			me	les of a	anhydrous m	agnesium	sulfate = .			mol [1]
	((iii)	Calculate the ratio of n answer as whole numb		anhydrous	magnesiur	m sulfate:	moles of	water.	Give your
	((iv)	Suggest the formula of	hydrate	ed magnesiu	m sulfate o			:	[1]
			formula of hydra	ited ma	ignesium sul	fate crysta	als =		•••••	[2]

sil	A sample of vanadium chloride was weighed and dissolved in water. An excess of aqueous silver nitrate, acidified with dilute nitric acid, was added. A precipitate of silver chloride was formed. The ionic equation for this reaction is shown.				
	$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$				
Th	ne mass of silver chloride formed was 2.87g.				
(i)	State the colour of the precipitate of silver chloride.				
	[1]				
(ii)	The relative formula mass of silver chloride, AgCl, is 143.5.				
	Calculate the number of moles in 2.87 g of AgCl.				
	moles of AgC <i>l</i> = mol [1]				
(iii)	Use your answer to (b)(ii) and the ionic equation to deduce the number of moles of chloride ions, Cl^- , that produced 2.87 g of AgC l .				
	moles of $Cl^- = \dots mol$ [1]				
(iv)	The amount of vanadium chloride in the sample was 0.01 moles.				
	Use this and your answer to (b)(iii) to deduce the whole number ratio of moles of vanadium chloride: moles of chloride ions. Deduce the formula of vanadium chloride.				
	moles of vanadium chloride: moles of chloride ions:				
	formula of vanadium chloride[2]				

$$BaCO_3 + 2HCl \rightarrow BaCl_2 + CO_2 + H_2O$$

9.85 g of barium carbonate were added to 250 cm³ of 1.00 mol/dm³ hydrochloric acid. This is an excess of hydrochloric acid.

(i)	Calculate	how many	moles of	f barium	carbonate	were	used	in this	experiment	
-----	-----------	----------	----------	----------	-----------	------	------	---------	------------	--

(ii) Deduce how many moles of carbon dioxide were made when all the barium carbonate had reacted.

(iii) Calculate the volume of carbon dioxide formed in (c)(ii) at room temperature and pressure, in dm³.

(iv) Calculate how many moles of hydrochloric acid there were in excess.

excess moles of hydrochloric acid = mol [2]

50.	Нус	drogen can be manufactured using a reversible reaction between methane and steam.
		$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
	At 9	900 °C, in the presence of a nickel catalyst, the yield of hydrogen is 70%.
	(i)	What volume of hydrogen is produced from 100 cm³ of methane under these conditions?
		cm³ [2]
	Und	der different conditions, different yields of hydrogen are obtained.
	(ii)	If the pressure is increased, the yield of hydrogen becomes less than 70%.
		Explain why, in terms of the position of the equilibrium.
		[1]
	(iii)	If the temperature is decreased, the yield of hydrogen decreases.
		What does this information indicate about the reaction between methane and steam?
		[1]
	(iv)	Why is a catalyst used in this reaction?
		[1]

5 1.	(b)	$25\mathrm{cm^3}$ of a gaseous hydrocarbon, $\mathrm{C_xH_{y^*}}$ were burnt in 150 $\mathrm{cm^3}$ of oxygen. This was an excess of oxygen.								
		After cooling, the volume of the gases remaining was 100 cm ³ . This consisted of 75 cm ³ of carbon dioxide and 25 cm ³ of unreacted oxygen. The water that was produced in the reaction was liquid.								
		All vol	umes w	ere measured at the s	ame te	emperature and p	pressure.			
		(i) W	/hat is n	neant by an excess of	oxyge	n?				
								[1]		
		(ii) W	/hat was	s the volume of oxyger	that r	eacted with the I	hydrocarbo	on?		
								cm³ [1]		
	((iii) C	omplete	the table to show the	smalle	est whole numbe	r ratio of v	olumes.		
				volume of hydrocarbon reacted	:	volume of oxygen reacted	:	volume of carbon dioxide produced		
		mber ra	atio of		:		:			
								[1]		
	(se your /drocarl		alance	the chemical ed	quation. De	educe the formula of the		
				$C_x H_y(g) +O_2($	g) →	CO ₂ (g) +	H ₂ O(I)			
					f	ormula of the hy	drocarbon	= [2]		